IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v169y2021i3d10.1007_s10584-021-03287-7.html
   My bibliography  Save this article

WRF/UCM simulations of the impacts of urban expansion and future climate change on atmospheric thermal environment in a Chinese megacity

Author

Listed:
  • Yang Zhao

    (University of Science and Technology of China)

  • Lei Zhong

    (University of Science and Technology of China
    CAS Center for Excellence in Comparative Planetology
    Jiangsu Collaborative Innovation Center for Climate Change)

  • Yaoming Ma

    (Chinese Academy of Science
    CAS Center for Excellence in Tibetan Plateau Earth Sciences
    University of Chinese Academy of Science
    Lanzhou University)

  • Yunfei Fu

    (University of Science and Technology of China)

  • Mingxing Chen

    (CAS)

  • Weiqiang Ma

    (Chinese Academy of Science
    CAS Center for Excellence in Tibetan Plateau Earth Sciences)

  • Chun Zhao

    (University of Science and Technology of China)

  • Ziyu Huang

    (University of Science and Technology of China)

  • Keqi Zhou

    (University of Science and Technology of China)

Abstract

Urban expansion and climate change can considerably influence the regional thermal environment. In this study, the effects of changes in land cover type and vegetation coverage (referred to as LU for short), gridded anthropogenic heat (AH) emission and future climate change on atmospheric thermal environment in a Chinese megacity, Hefei, are investigated by Weather Research and Forecasting (WRF)/Urban Canopy Model (UCM) model. It is found that the increase of surface sensible heat in old urban areas is contributed by AH emission, while that in new urban areas is attributed to LU change. The LU change in new urban areas can lead to the decreased latent heat flux due to the reduction of vegetation coverage and the increase of impervious land surface. The contribution of LU change to the summer UHI intensity is about 0.76 ℃, and AH emission to that is about 0.17 ℃. The combined effects of LU change and AH emission in old urban areas are greater than those in new urban areas, leading to changes in daily mean 2-m air temperature, 2-m relative humidity (RH), and heat index in old (new) urban areas to be 1.08 ℃ (0.75 ℃), – 5.93% (– 4.96%), and 2.77 ℃ (1.76 ℃), respectively. At the end of the twenty-first century, the urban air temperature under RCP 4.5 (RCP 8.5) scenario is 0.7 ℃ (3 ℃) higher than that at present.

Suggested Citation

  • Yang Zhao & Lei Zhong & Yaoming Ma & Yunfei Fu & Mingxing Chen & Weiqiang Ma & Chun Zhao & Ziyu Huang & Keqi Zhou, 2021. "WRF/UCM simulations of the impacts of urban expansion and future climate change on atmospheric thermal environment in a Chinese megacity," Climatic Change, Springer, vol. 169(3), pages 1-17, December.
  • Handle: RePEc:spr:climat:v:169:y:2021:i:3:d:10.1007_s10584-021-03287-7
    DOI: 10.1007/s10584-021-03287-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03287-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03287-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengyao Li & Hongxia Luo & Zili Qin & Yuanxin Tong, 2023. "Spatial-Temporal Simulation of Carbon Storage Based on Land Use in Yangtze River Delta under SSP-RCP Scenarios," Land, MDPI, vol. 12(2), pages 1-18, February.
    2. Xiamei Yao & Yuanyuan Chen & Qingyi Zhang & Zhongqiong Mou & Xiaojie Yao & Chun Ou, 2022. "Assessment of the Urban Expansion and Its Impact on the Eco-Environment—A Case Study of Hefei Municipal Area," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    3. Keqi Zhou & Lei Zhong & Zixin Wang & Jie Liu & Zhenhao Wu, 2024. "Evaluating the impacts of land use/land cover changes and climate variations on urban heat islands using the WRF-UCM model in Hefei, China," Climatic Change, Springer, vol. 177(8), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:169:y:2021:i:3:d:10.1007_s10584-021-03287-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.