IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v163y2020i1d10.1007_s10584-020-02886-0.html
   My bibliography  Save this article

Effective sample size for precipitation estimation in atmospheric general circulation model ensemble experiments: dependence on temporal and spatial averaging scales

Author

Listed:
  • Kenshi Hibino

    (The University of Tokyo)

  • Izuru Takayabu

    (Meteorological Research Institute)

Abstract

The accuracy of climate projections is improved by increasing the number of samples from ensemble experiments, leading to a decrease in the confidence interval of a target climatological variable. The improvement in the accuracy depends on the degree of independence of each ensemble member in the experiments. When the members of ensemble experiments are dependent on each other, the introduction of an effective sample size (ESS) is necessary to correctly estimate the confidence interval. This study is the first attempt to estimate the ESS for precipitation as a function of the number of ensemble members, although some previous studies have investigated another type of ESS in terms of the length of simulation period. The ESS in the present study is intrinsic to the atmospheric general circulation models (AGCM) forced by the ocean boundary condition because the outputs of AGCM ensemble members are similar or dependent on each other due to the commonly used boundary condition, i.e., the distribution of sea surface temperature, sea ice concentration, and sea ice thickness. Looking at the values of ESS as a function of geographical location, those in the tropics and over the ocean are smaller than those at higher latitudes and over continents; precipitation events in areas with smaller (larger) ESS are strongly (weakly) constrained by the ocean boundary condition. The increase in temporal and spatial averaging scales for precipitation estimation leads to the decrease in the ESS, of whose trend is attributed to the spatio-temporal characteristics of the precipitation events as represented by the power spectrum and co-spectrum.

Suggested Citation

  • Kenshi Hibino & Izuru Takayabu, 2020. "Effective sample size for precipitation estimation in atmospheric general circulation model ensemble experiments: dependence on temporal and spatial averaging scales," Climatic Change, Springer, vol. 163(1), pages 297-315, November.
  • Handle: RePEc:spr:climat:v:163:y:2020:i:1:d:10.1007_s10584-020-02886-0
    DOI: 10.1007/s10584-020-02886-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02886-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02886-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:163:y:2020:i:1:d:10.1007_s10584-020-02886-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.