IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v162y2020i2d10.1007_s10584-020-02778-3.html
   My bibliography  Save this article

Projection of winter NPO-following winter ENSO connection in a warming climate: uncertainty due to internal climate variability

Author

Listed:
  • Shangfeng Chen

    (Chinese Academy of Sciences)

  • Bin Yu

    (Environment and Climate Change Canada)

Abstract

Previous observational and modeling studies indicate that the wintertime North Pacific Oscillation (NPO) could significantly impact the following winter El Niño-Southern Oscillation (ENSO) variability via the seasonal footprinting mechanism (SFM). This study explores climate projections of this winter NPO-ENSO relation in a warming climate based on a 50-member large ensemble of climate simulations conducted with the second-generation Canadian Earth System Model (CanESM2). The ensemble mean of the 50 members can well reproduce the observed winter NPO pattern, the NPO-ENSO relationship, and the SFM process over the historical period 1950–2003. These 50 members are then employed to examine climate projections of the NPO-ENSO connection over the anthropogenic forced period 2020–2073. Results indicate that there exists a large spread of projected NPO-ENSO connections across these 50 ensemble members due to internal climate variability. Internal climate variability brings uncertainties in the projection of the winter NPO-ENSO connection originally seen in projected changes of the subtropical center of the winter NPO. The spread of projections of winter NPO-associated atmospheric anomalies over the subtropical North Pacific further results in various responses in the projections of winter and spring precipitation anomalies over the tropical North Pacific, as well as spring zonal wind anomalies over the tropical western Pacific, which eventually lead to uncertainties in the projection of the sea surface temperature anomalies in the tropical central-eastern Pacific from the following summer to winter.

Suggested Citation

  • Shangfeng Chen & Bin Yu, 2020. "Projection of winter NPO-following winter ENSO connection in a warming climate: uncertainty due to internal climate variability," Climatic Change, Springer, vol. 162(2), pages 723-740, September.
  • Handle: RePEc:spr:climat:v:162:y:2020:i:2:d:10.1007_s10584-020-02778-3
    DOI: 10.1007/s10584-020-02778-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02778-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02778-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Sigmond & John C. Fyfe, 2016. "Tropical Pacific impacts on cooling North American winters," Nature Climate Change, Nature, vol. 6(10), pages 970-974, October.
    2. Gabriel Rondeau-Genesse & Marco Braun, 2019. "Impact of internal variability on climate change for the upcoming decades: analysis of the CanESM2-LE and CESM-LE large ensembles," Climatic Change, Springer, vol. 156(3), pages 299-314, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pécastaing, Nicolas & Salavarriga, Juan, 2022. "The potential impact of fishing in peruvian marine protected areas (MPAs) on artisanal fishery poverty during El Niño events," Ecological Economics, Elsevier, vol. 202(C).
    2. Bin Yu & Xuebin Zhang & Guilong Li & Wei Yu, 2022. "Interhemispheric asymmetry of climate change projections of boreal winter surface winds in CanESM5 large ensemble simulations," Climatic Change, Springer, vol. 170(3), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cha Zhao & François Brissette, 2022. "Impacts of large-scale oscillations on climate variability over North America," Climatic Change, Springer, vol. 173(1), pages 1-21, July.
    2. Gabriel Rondeau-Genesse & Marco Braun, 2019. "Impact of internal variability on climate change for the upcoming decades: analysis of the CanESM2-LE and CESM-LE large ensembles," Climatic Change, Springer, vol. 156(3), pages 299-314, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:162:y:2020:i:2:d:10.1007_s10584-020-02778-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.