IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v162y2020i1d10.1007_s10584-020-02740-3.html
   My bibliography  Save this article

A specialised delivery system for stratospheric sulphate aerosols: design and operation

Author

Listed:
  • M. Janssens

    (Delft University of Technology)

  • I. E. Vries

    (Stockholm University)

  • S. J. Hulshoff

    (Delft University of Technology)

Abstract

Temporary stratospheric aerosol injection (SAI) using sulphate compounds could help to mitigate some of the adverse and irreversible impacts of global warming. Among the risks and uncertainties of SAI, the development of a delivery system presents an appreciable technical challenge. Early studies indicate that specialised aircraft appear the most feasible (McClelan et al., Aurora Flight Sciences, 2010; Smith and Wagner, Environ Res Lett 13(12), 2018). Yet, their technical design characteristics, financial cost of deployment, and emissions have yet to be studied in detail. Therefore, these topics are examined in this two- part study. This first part outlines a set of injection scenarios and proposes a detailed, feasible aircraft design. Part 2 considers the resulting financial cost and equivalent CO2 emissions spanned by the scenarios and aircraft. Our injection scenarios comprise the direct injection of H2SO4 vapour over a range of possible dispersion rates and an SO2 injection scenario for comparison. To accommodate the extreme demands of delivering large payloads to high altitudes, a coupled optimisation procedure is used to design the system. This results in an unmanned aircraft configuration featuring a large, slender, strut-braced wing and four custom turbofan engines. The aircraft is designed to carry high-temperature H2SO4, which is evaporated prior to injection into a single outboard engine plume. Optimised flight profiles are produced for each injection scenario, all involving an initial climb to an outgoing dispersion leg at 20 km altitude, followed by a return dispersion leg at a higher altitude of 20.5 km. All the scenarios considered are found to be technologically and logistically attainable. However, the results demonstrate that achieving high engine plume dispersion rates is of principal importance for containing the scale of SAI delivery systems based on direct H2SO4 injection, and to keep these competitive with systems based on SO2 injection.

Suggested Citation

  • M. Janssens & I. E. Vries & S. J. Hulshoff, 2020. "A specialised delivery system for stratospheric sulphate aerosols: design and operation," Climatic Change, Springer, vol. 162(1), pages 67-85, September.
  • Handle: RePEc:spr:climat:v:162:y:2020:i:1:d:10.1007_s10584-020-02740-3
    DOI: 10.1007/s10584-020-02740-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02740-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02740-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:162:y:2020:i:1:d:10.1007_s10584-020-02740-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.