IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v158y2020i3d10.1007_s10584-019-02586-4.html
   My bibliography  Save this article

Soil freeze depth variability across Eurasia during 1850–2100

Author

Listed:
  • Xiaoqing Peng

    (Lanzhou University)

  • Tingjun Zhang

    (Lanzhou University)

  • Oliver W. Frauenfeld

    (Texas A&M University)

  • Ran Du

    (Lanzhou University)

  • Qing Wei

    (Lanzhou University)

  • Benben Liang

    (Lanzhou University)

Abstract

Soil freeze depth (SFD) is an important indicator of cryospheric and climate change. Changes in SFD have important effects on hydrology, the energy balance, carbon exchange, and ecosystem diversity. However, quantifying and predicting SFD at large scales remains a challenge due to sparse long-term observations. This study employs the Stefan solution combined with 16 of the coupled model inter-comparison project phase 5 (CMIP5) models over the historical period (1850–2005) and three representative concentration pathways (RCP 2.6, 4.5, and 8.5) for 2006–2100, the Climatic Research Unit dataset (1901–2013), and hundreds of soil temperature, air temperature, precipitation, and snow depth sites to analyze the spatiotemporal variability of SFD in Eurasia under historical and projected climate change. During 1850–2005, a statistically significant SFD decrease of 0.49 ± 0.04 cm/decade is observed. Spatially, the biggest decreases are generally in Siberia and on the Tibetan Plateau. There is a projected decrease in 2006–2100 SFD of 4.58 ± 0.26, 1.85 ± 0.21, and 0.45 ± 0.18 cm/decade for RCP 8.5, 4.5, 2.6, respectively. These variations in SFD provide key insights into spatiotemporal changes in climate, and facilitate improved understanding of variation in frozen ground across Eurasia.

Suggested Citation

  • Xiaoqing Peng & Tingjun Zhang & Oliver W. Frauenfeld & Ran Du & Qing Wei & Benben Liang, 2020. "Soil freeze depth variability across Eurasia during 1850–2100," Climatic Change, Springer, vol. 158(3), pages 531-549, February.
  • Handle: RePEc:spr:climat:v:158:y:2020:i:3:d:10.1007_s10584-019-02586-4
    DOI: 10.1007/s10584-019-02586-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-019-02586-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-019-02586-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanlin Zhang & Guodong Cheng & Xin Li & Huijun Jin & Dawen Yang & Gerald N. Flerchinger & Xiaoli Chang & Victor F. Bense & Xujun Han & Ji Liang, 2017. "Influences of Frozen Ground and Climate Change on Hydrological Processes in an Alpine Watershed: A Case Study in the Upstream Area of the Hei'he River, Northwest China," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 28(2), pages 420-432, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikhail Yu. Filimonov & Yaroslav K. Kamnev & Aleksandr N. Shein & Nataliia A. Vaganova, 2022. "Modeling the Temperature Field in Frozen Soil under Buildings in the City of Salekhard Taking into Account Temperature Monitoring," Land, MDPI, vol. 11(7), pages 1-21, July.
    2. Georgii A. Alexandrov & Veronika A. Ginzburg & Gregory E. Insarov & Anna A. Romanovskaya, 2021. "CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario," Climatic Change, Springer, vol. 169(3), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajaykumar Kadam & Animesh S. Karnewar & Bhavana Umrikar & R. N. Sankhua, 2019. "Hydrological response-based watershed prioritization in semiarid, basaltic region of western India using frequency ratio, fuzzy logic and AHP method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(4), pages 1809-1833, August.

    More about this item

    Keywords

    Soil freeze depth; CMIP5; Eurasia; Climate change;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:158:y:2020:i:3:d:10.1007_s10584-019-02586-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.