IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v154y2019i1d10.1007_s10584-019-02416-7.html
   My bibliography  Save this article

Effect of altitude on climate–growth relationships of Chinese white pine (Pinus armandii) in the northern Funiu Mountain, central China

Author

Listed:
  • Jianfeng Peng

    (Henan University)

  • Jinbao Li

    (Henan University
    University of Hong Kong)

  • Ting Wang

    (Henan Agriculture University)

  • Jiaxin Huo

    (Henan University)

  • Liu Yang

    (Henan University)

Abstract

We developed three tree-ring width chronologies of Chinese white pine (Pinus armandii) along an altitudinal gradient on the same slope of the northern Funiu Mountain, central China. Chronological statistics indicate that there are higher mean sensitivity (M.S.) and standard deviation (S.D.) at high-altitude site while higher signal-to-noise ratio (SNR) and expressed population signal (EPS) at low-altitude site. Correlation analyses between chronologies and climate factors indicate that temperature is the main limiting factor, and discrepant response on tree growth exists at different altitudes. Mean and maximum temperatures in May have significant negative correlations with tree growth at mid and high altitudes, while all temperatures in April show significant positive correlations at high altitude and minimum temperature in August shows significant positive correlation at low-altitude site. It is evident that the limit of temperatures in April and May to tree growth strengthened with increasing altitude. Tree growth also shows significant positive correlations with precipitation in May at high altitude, with precipitation from prior December to current February and scPDSI (self-calibrating Palmer Drought Severity Index) from prior July to current February and May at mid altitude and relative humidity in February and June and scPDSI in current June at low-altitude site. Stability of climate–growth responses by moving correlation analyses shows continuous significant negative correlations with mean and maximum temperature in May and significant positive correlation with precipitation in May at high and low altitudes since 2000 but discontinuously significant negative correlation with precipitation in July–September before 2003 and discontinuously significant positive correlation with precipitation from prior December to current February after 1995. The strong significant positive correlations with scPDSI from prior November to current June since 1990 may indicate that temperature had induced drought stress on tree radial growth at mid-altitude site.

Suggested Citation

  • Jianfeng Peng & Jinbao Li & Ting Wang & Jiaxin Huo & Liu Yang, 2019. "Effect of altitude on climate–growth relationships of Chinese white pine (Pinus armandii) in the northern Funiu Mountain, central China," Climatic Change, Springer, vol. 154(1), pages 273-288, May.
  • Handle: RePEc:spr:climat:v:154:y:2019:i:1:d:10.1007_s10584-019-02416-7
    DOI: 10.1007/s10584-019-02416-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-019-02416-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-019-02416-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eryuan Liang & Christoph Leuschner & Choimaa Dulamsuren & Bettina Wagner & Markus Hauck, 2016. "Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau," Climatic Change, Springer, vol. 134(1), pages 163-176, January.
    2. Eryuan Liang & Christoph Leuschner & Choimaa Dulamsuren & Bettina Wagner & Markus Hauck, 2016. "Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau," Climatic Change, Springer, vol. 134(1), pages 163-176, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tonggang Fu & Hongzhu Liang & Hui Gao & Jintong Liu, 2021. "The Taihang Mountain Region of North China is Experiencing A Significant Warming Trend," Sustainability, MDPI, vol. 13(2), pages 1-18, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:154:y:2019:i:1:d:10.1007_s10584-019-02416-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.