Author
Abstract
Many large valley glaciers in the world are retreating at historically unprecedented rates. Also in the Alps, where warming over the past decades has been more than twice as large as the global mean, all major glaciers have retreated over distances of several kilometers over the past hundred years. The Morteratsch Glacier, Pontresina, Switzerland, is a major touristic attraction. Due to strong retreat, the lowest part of the glacier is getting out of sight from the gravel road that provided direct access to the glacier front. The Community of Pontresina has commissioned a preparatory study to find out if it is possible to slow down the retreat of the Morteratsch Glacier in an environmentally friendly way. In this article, we report on the outcome of such a study, based on a modeling approach. Our analysis is based on a 20-year weather station record from the lower part of the glacier, combined with calculations with a calibrated ice-flow model. We arrive at the conclusion that producing summer snow in the ablation zone over a larger area (typically 0.5 to 1 km2) may have a significant effect on the rate of retreat on a timescale of decades. We consider various scenarios of climate change: (i) no change, (ii) a rise of the equilibrium-line altitude (ELA) by 1, 2, and 4 m/yr. Projections of glacier length are calculated until the year 2100. It takes about 10 years before snow deposition in the higher ablation zone starts to affect the position of the glacier snout. For the case of modest warming, the difference in glacier length between the snow and no-snow experiments becomes 400 to 500 m within two decades.
Suggested Citation
Johannes Oerlemans & Martin Haag & Felix Keller, 2017.
"Slowing down the retreat of the Morteratsch glacier, Switzerland, by artificially produced summer snow: a feasibility study,"
Climatic Change, Springer, vol. 145(1), pages 189-203, November.
Handle:
RePEc:spr:climat:v:145:y:2017:i:1:d:10.1007_s10584-017-2102-1
DOI: 10.1007/s10584-017-2102-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:145:y:2017:i:1:d:10.1007_s10584-017-2102-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.