IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v143y2017i3d10.1007_s10584-017-1995-z.html
   My bibliography  Save this article

Potential impact of climate change on the risk of windthrow in eastern Canada’s forests

Author

Listed:
  • Christian Saad

    (Université du Québec à Montréal)

  • Yan Boulanger

    (Laurentian Forestry Centre)

  • Marilou Beaudet

    (Laurentian Forestry Centre)

  • Philippe Gachon

    (Laurentian Forestry Centre)

  • Jean-Claude Ruel

    (Université Laval)

  • Sylvie Gauthier

    (Laurentian Forestry Centre)

Abstract

Climate change is likely to affect windthrow risks at northern latitudes by potentially changing high wind probabilities and soil frost duration. Here, we evaluated the effect of climate change on windthrow risk in eastern Canada’s balsam fir (Abies balsamea [L.] Mill.) forests using a methodology that accounted for changes in both wind speed and soil frost duration. We used wind speed and soil temperature projections at the regional scale from the CRCM5 regional climate model (RCM) driven by the CanESM2 global climate model (GCM) under two representative concentration pathways (RCP4.5, RCP8.5), for a baseline (1976–2005) and two future periods (2041–2070, 2071–2100). A hybrid mechanistic model (ForestGALES) that considers species resistance to uprooting and wind speed distribution was used to calculate windthrow risk. An increased risk of windthrow (3 to 30%) was predicted for the future mainly due to an increased duration of unfrozen soil conditions (by up to 2 to 3 months by the end of the twenty-first century under RCP8.5). In contrast, wind speed did not vary markedly with a changing climate. Strong regional variations in wind speeds translated into regional differences in windthrow risk, with the easternmost region (Atlantic provinces) having the strongest winds and the highest windthrow risk. Because of the inherent uncertainties associated with climate change projections, especially regarding wind climate, further research is required to assess windthrow risk from the optimum combination of RCM/GCM ensemble simulations.

Suggested Citation

  • Christian Saad & Yan Boulanger & Marilou Beaudet & Philippe Gachon & Jean-Claude Ruel & Sylvie Gauthier, 2017. "Potential impact of climate change on the risk of windthrow in eastern Canada’s forests," Climatic Change, Springer, vol. 143(3), pages 487-501, August.
  • Handle: RePEc:spr:climat:v:143:y:2017:i:3:d:10.1007_s10584-017-1995-z
    DOI: 10.1007/s10584-017-1995-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-017-1995-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-017-1995-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miren Lorente & S. Gauthier & P. Bernier & C. Ste-Marie, 2020. "Tracking forest changes: Canadian Forest Service indicators of climate change," Climatic Change, Springer, vol. 163(4), pages 1839-1853, December.
    2. Jasiūnas, Justinas & Láng-Ritter, Ilona & Heikkinen, Tatu & Lund, Peter D., 2024. "Case beyond historical severity: Winds, faults, outages, and costs for electric grid," Applied Energy, Elsevier, vol. 373(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:143:y:2017:i:3:d:10.1007_s10584-017-1995-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.