IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v135y2016i3d10.1007_s10584-015-1574-0.html
   My bibliography  Save this article

Changes in the low flow regime over the eastern United States (1962–2011): variability, trends, and attributions

Author

Listed:
  • Jonghun Kam

    (Princeton University)

  • Justin Sheffield

    (Princeton University)

Abstract

We examine trends and variability in low flows over the eastern U.S. (S. Carolina to Maine) and their attribution in a changing climate. We select 149 out of 4878 USGS stations over the eastern U.S., taking into account data availability and minimal direct management. Annual 7-day low flows (Q7) are computed from the series of daily streamflow records for 1962–2011 and compared to an antecedent precipitation (AP) index calculated over the corresponding basin for each station. In general, a north–south (increasing-decreasing) dipole pattern in low flow trends is associated with trends in AP. The exception is in the southern part of the study area including Virginia and the Carolinas, where moderate increasing trends in AP may have been offset by water withdrawals and increasing potential evapotranspiration (PET) as driven by increasing temperature and vapor pressure deficit. A principal component analysis (PCA) of Q7 and AP indicates that the North Atlantic Oscillation (NAO) and Pacific North America (PNA) pattern show statistically significant correlations for Q7 at 1 and 2 month lead time, respectively, via large-scale pressure patterns. Our findings suggest that the inter-annual variability of low flows has increased due to significant anti-correlation between the NAO and PNA during recent decades, and the future risk of low flow extremes may be further enhanced with temperature driven increases in PET and persistence of the multi-decadal relationship between NAO and PNA.

Suggested Citation

  • Jonghun Kam & Justin Sheffield, 2016. "Changes in the low flow regime over the eastern United States (1962–2011): variability, trends, and attributions," Climatic Change, Springer, vol. 135(3), pages 639-653, April.
  • Handle: RePEc:spr:climat:v:135:y:2016:i:3:d:10.1007_s10584-015-1574-0
    DOI: 10.1007/s10584-015-1574-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-015-1574-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-015-1574-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammet Yılmaz & Fatih Tosunoğlu, 2023. "Assessing the main drivers of low flow series in Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1927-1953, February.
    2. Ligia de Oliveira Serrano & Rayssa Balieiro Ribeiro & Alisson Carraro Borges & Fernando Falco Pruski, 2020. "Low-Flow Seasonality and Effects on Water Availability throughout the River Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1289-1304, March.
    3. Subhasis Mitra & Puneet Srivastava, 2017. "Spatiotemporal variability of meteorological droughts in southeastern USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1007-1038, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:135:y:2016:i:3:d:10.1007_s10584-015-1574-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.