IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v119y2013i3p949-964.html
   My bibliography  Save this article

Climate change and river flooding: Part 2 sensitivity characterisation for british catchments and example vulnerability assessments

Author

Listed:
  • Christel Prudhomme
  • Alison Kay
  • Sue Crooks
  • Nick Reynard

Abstract

This paper is the second of a series describing a scenario-neutral methodology to assess the sensitivity and vulnerability of British catchments to changes in flooding due to climate change. In paper one, nine flood sensitivity types were identified from response surfaces generated for 154 catchments. The response surfaces describe changes in 20-year return period flood peaks (RP20) in response to a large set of changes in precipitation, temperature and potential evapotranspiration. In this paper, a recursive partitioning algorithm is used to link families of sensitivity types to catchment properties, via a decision tree. The tree shows 85 % success characterising the four sensitivity families, using five properties and nine paths. Catchment annual average rainfall is the primary partitioning factor, with drier catchments having a more variable response to climate (precipitation) change than wetter catchments and higher catchment losses and permeability being aggravating factors. The full sensitivity-exposure-vulnerability methodology is illustrated for two catchments: sensitivity is estimated by using the decision tree to identify the sensitivity family (and its associated average response surface); exposure is defined from a set of climate model projections and combined with the response surface to estimate the resulting impacts (changes in RP20); vulnerability under a range of adaptive capacity thresholds is estimated from the set of impacts. Even though they are geographically close, the two catchments show differing vulnerability to climate change, due to their differing properties. This demonstrates that generalised response surfaces characterised by catchment properties are useful screening tools to quantify the vulnerability of catchments to climate change without the need to undertake a full climate change impact study. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Christel Prudhomme & Alison Kay & Sue Crooks & Nick Reynard, 2013. "Climate change and river flooding: Part 2 sensitivity characterisation for british catchments and example vulnerability assessments," Climatic Change, Springer, vol. 119(3), pages 949-964, August.
  • Handle: RePEc:spr:climat:v:119:y:2013:i:3:p:949-964
    DOI: 10.1007/s10584-013-0726-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-0726-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-0726-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christel Prudhomme & Sue Crooks & Alison Kay & Nick Reynard, 2013. "Climate change and river flooding: part 1 classifying the sensitivity of British catchments," Climatic Change, Springer, vol. 119(3), pages 933-948, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dallison, Richard J.H. & Patil, Sopan D., 2023. "Impact of climate change on hydropower potential in the UK and Ireland," Renewable Energy, Elsevier, vol. 207(C), pages 611-628.
    2. John Tzilivakis & D. Warner & A. Green & K. Lewis, 2015. "Adapting to climate change: assessing the vulnerability of ecosystem services in Europe in the context of rural development," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(4), pages 547-572, April.
    3. Christel Prudhomme & Sue Crooks & Alison Kay & Nick Reynard, 2013. "Climate change and river flooding: part 1 classifying the sensitivity of British catchments," Climatic Change, Springer, vol. 119(3), pages 933-948, August.
    4. S. Camici & L. Brocca & T. Moramarco, 2017. "Accuracy versus variability of climate projections for flood assessment in central Italy," Climatic Change, Springer, vol. 141(2), pages 273-286, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dallison, Richard J.H. & Patil, Sopan D., 2023. "Impact of climate change on hydropower potential in the UK and Ireland," Renewable Energy, Elsevier, vol. 207(C), pages 611-628.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:119:y:2013:i:3:p:949-964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.