IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v116y2013i3p547-563.html
   My bibliography  Save this article

Assessing vulnerability due to sea-level rise in Maui, Hawai ‘i using LiDAR remote sensing and GIS

Author

Listed:
  • Hannah Cooper
  • Qi Chen
  • Charles Fletcher
  • Matthew Barbee

Abstract

Sea-level rise (SLR) threatens islands and coastal communities due to vulnerable infrastructure and populations concentrated in low-lying areas. LiDAR (Light Detection and Ranging) data were used to produce high-resolution DEMs (Digital Elevation Model) for Kahului and Lahaina, Maui, to assess the potential impacts of future SLR. Two existing LiDAR datasets from USACE (U.S. Army Corps of Engineers) and NOAA (National Oceanic and Atmospheric Administration) were compared and calibrated using the Kahului Harbor tide station. Using tidal benchmarks is a valuable approach for referencing LiDAR in areas lacking an established vertical datum, such as in Hawai‘i and other Pacific Islands. Exploratory analysis of the USACE LiDAR ground returns (point data classified as ground after the removal of vegetation and buildings) indicated that another round of filtering could reduce commission errors. Two SLR scenarios of 0.75 (best-case) to 1.9 m (worst-case) (Vermeer and Rahmstorf Proc Natl Acad Sci 106:21527–21532, 2009 ) were considered, and the DEMs were used to identify areas vulnerable to flooding. Our results indicate that if no adaptive strategies are taken, a loss ranging from $18.7 million under the best-case SLR scenario to $296 million under the worst-case SLR scenario for Hydrologically Connected (HC; marine inundation) and Hydrologically Disconnected (HD; drainage problems due to a higher water table) areas combined is possible for Kahului; a loss ranging from $57.5 million under the best-case SLR scenario to $394 million under the worst-case SLR scenario for HC and HD areas combined is possible for Lahaina towards the end of the century. This loss would be attributable to inundation between 0.55 km 2 to 2.13 km 2 of area for Kahului, and 0.04 km 2 to 0.37 km 2 of area for Lahaina. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Hannah Cooper & Qi Chen & Charles Fletcher & Matthew Barbee, 2013. "Assessing vulnerability due to sea-level rise in Maui, Hawai ‘i using LiDAR remote sensing and GIS," Climatic Change, Springer, vol. 116(3), pages 547-563, February.
  • Handle: RePEc:spr:climat:v:116:y:2013:i:3:p:547-563
    DOI: 10.1007/s10584-012-0510-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0510-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0510-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keqi Zhang & John Dittmar & Michael Ross & Chris Bergh, 2011. "Assessment of sea level rise impacts on human population and real property in the Florida Keys," Climatic Change, Springer, vol. 107(1), pages 129-146, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jejal Reddy Bathi & Himangshu S. Das, 2016. "Vulnerability of Coastal Communities from Storm Surge and Flood Disasters," IJERPH, MDPI, vol. 13(2), pages 1-12, February.
    2. Salim Mohammed Al-Hajri & George P. Petropoulos & Vassiliki Markogianni, 2021. "Seasonal variation of key environmental parameters in the Sea of Oman using EO data and GIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6021-6046, April.
    3. Thomas David Pol & Jochen Hinkel, 2019. "Uncertainty representations of mean sea-level change: a telephone game?," Climatic Change, Springer, vol. 152(3), pages 393-411, March.
    4. Xinyu Fu & Jie Song, 2017. "Assessing the Economic Costs of Sea Level Rise and Benefits of Coastal Protection: A Spatiotemporal Approach," Sustainability, MDPI, vol. 9(8), pages 1-14, August.
    5. Johnson Ankrah & Ana Monteiro & Helena Madureira, 2023. "Geospatiality of sea level rise impacts and communities’ adaptation: a bibliometric analysis and systematic review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1-31, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Xu & Weibo Liu, 2021. "The Spatiotemporal Characteristics and Dynamic Changes of Tidal Flats in Florida from 1984 to 2020," Geographies, MDPI, vol. 1(3), pages 1-23, November.
    2. Joyce Maschinski & Michael Ross & Hong Liu & Joe O’Brien & Eric Wettberg & Kristin Haskins, 2011. "Sinking ships: conservation options for endemic taxa threatened by sea level rise," Climatic Change, Springer, vol. 107(1), pages 147-167, July.
    3. Randall Parkinson & Peter Harlem & John Meeder, 2015. "Managing the Anthropocene marine transgression to the year 2100 and beyond in the State of Florida U.S.A," Climatic Change, Springer, vol. 128(1), pages 85-98, January.
    4. Ryan Paulik & Scott A. Stephens & Robert G. Bell & Sanjay Wadhwa & Ben Popovich, 2020. "National-Scale Built-Environment Exposure to 100-Year Extreme Sea Levels and Sea-Level Rise," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    5. Reed Noss, 2011. "Between the devil and the deep blue sea: Florida’s unenviable position with respect to sea level rise," Climatic Change, Springer, vol. 107(1), pages 1-16, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:116:y:2013:i:3:p:547-563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.