Author
Listed:
- Mimi Rose Abel
(National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Physical Sciences Division)
- Alex Hall
(University of California, Los Angeles)
- Jinwon Kim
(University of California, Los Angeles)
Abstract
The frequency and character of Southern California’s Santa Ana wind events are investigated within a 12-km-resolution downscaling of late-20th and mid-21st century time periods of the National Center for Atmospheric Research Community Climate System Model global climate change scenario run. The number of Santa Ana days per winter season is approximately 20% fewer in the mid 21st century compared to the late 20th century. Since the only systematic and sustained difference between these two periods is the level of anthropogenic forcing, this effect is anthropogenic in origin. In both time periods, Santa Ana winds are partly katabatically-driven by a temperature difference between the cold wintertime air pooling in the desert against coastal mountains and the adjacent warm air over the ocean. However, this katabatic mechanism is significantly weaker during the mid 21st century time period. This occurs because of the well-documented differential warming associated with transient climate change, with more warming in the desert interior than over the ocean. Thus the mechanism responsible for the decrease in Santa Ana frequency originates from a well-known aspect of the climate response to increasing greenhouse gases, but cannot be understood or simulated without mesoscale atmospheric dynamics. In addition to the change in Santa Ana frequency, we investigate changes during Santa Anas in two other meteorological variables known to be relevant to fire weather conditions—relative humidity and temperature. We find a decrease in the relative humidity and an increase in temperature. Both these changes would favor fire. A fire behavior model accounting for changes in wind, temperature, and relative humidity simultaneously is necessary to draw firm conclusions about future fire risk and growth associated with Santa Ana events. While our results are somewhat limited by a relatively small sample size, they illustrate an observed and explainable regional change in climate due to plausible mesoscale processes.
Suggested Citation
Mimi Rose Abel & Alex Hall & Jinwon Kim, 2011.
"Human-induced changes in wind, temperature and relative humidity during Santa Ana events,"
Climatic Change, Springer, vol. 109(1), pages 119-132, December.
Handle:
RePEc:spr:climat:v:109:y:2011:i:1:d:10.1007_s10584-011-0300-9
DOI: 10.1007/s10584-011-0300-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:109:y:2011:i:1:d:10.1007_s10584-011-0300-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.