IDEAS home Printed from https://ideas.repec.org/a/spr/circec/v5y2025i1d10.1007_s43615-024-00428-9.html
   My bibliography  Save this article

Multiple Goals for Biomass Residues in Circular Bioeconomies? Assessing Circularities and Carbon Footprints of Residue-Based Products

Author

Listed:
  • Johanna Olofsson

    (Lund University)

Abstract

Biomass residues are often considered key in a reorientation towards circular bioeconomies, both by returning organic matter and nutrients to soils and by expanding the feedstock base for fossil-free products. Different indicators are available to assess progress towards circularity, but many available indicators and assessments seem to focus on product or material circularity, and lack in coverage of ecological or nutrient circularity. This study therefore applies both material and nutrient circularity indicators to two cases of residual biomass’ valorisation: plastics production from wheat straw, and jet fuel production from animal by-products, in order to better understand the potential of the different types of indicators to assess the circularities of bio-based products. Both the studied production systems achieve approximately 50% material circularity in the base case, but the scores are significantly lower when upstream processes such as cultivation and animal husbandry are included. In the plastics case, the nutrient circularity scores are consistently lower than material circularity scores. The contribution to circularity from composting and recycling of different streams can be interpreted differently following the different types of circularities and, in addition, considering the potential climate impact of different strategies. This study shows that a combination of methods and indicators can shed light on different types of circularities and goals, but also that a wider discussion on what circularity may entail for biomass and biomass residues, and how it can be measured, is needed to develop useful indicators for bio-based circularity and circular bioeconomies.

Suggested Citation

  • Johanna Olofsson, 2025. "Multiple Goals for Biomass Residues in Circular Bioeconomies? Assessing Circularities and Carbon Footprints of Residue-Based Products," Circular Economy and Sustainability, Springer, vol. 5(1), pages 101-123, February.
  • Handle: RePEc:spr:circec:v:5:y:2025:i:1:d:10.1007_s43615-024-00428-9
    DOI: 10.1007/s43615-024-00428-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43615-024-00428-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43615-024-00428-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carl Vadenbo & Stefanie Hellweg & Thomas Fruergaard Astrup, 2017. "Let's Be Clear(er) about Substitution: A Reporting Framework to Account for Product Displacement in Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 21(5), pages 1078-1089, October.
    2. Iris Vural Gursel & Berien Elbersen & Koen P. H. Meesters & Myrna van Leeuwen, 2022. "Defining Circular Economy Principles for Biobased Products," Sustainability, MDPI, vol. 14(19), pages 1-21, October.
    3. van Loon, Marloes P. & Vonk, Wytse J. & Hijbeek, Renske & van Ittersum, Martin K. & ten Berge, Hein F.M., 2023. "Circularity indicators and their relation with nutrient use efficiency in agriculture and food systems," Agricultural Systems, Elsevier, vol. 207(C).
    4. Daniel Hausknost & Ernst Schriefl & Christian Lauk & Gerald Kalt, 2017. "A Transition to Which Bioeconomy? An Exploration of Diverging Techno-Political Choices," Sustainability, MDPI, vol. 9(4), pages 1-22, April.
    5. Jarre, Matteo & Petit-Boix, Anna & Priefer, Carmen & Meyer, Rolf & Leipold, Sina, 2020. "Transforming the bio-based sector towards a circular economy - What can we learn from wood cascading?," Forest Policy and Economics, Elsevier, vol. 110(C).
    6. Mikael Lantz & Thomas Prade & Serina Ahlgren & Lovisa Björnsson, 2018. "Biogas and Ethanol from Wheat Grain or Straw: Is There a Trade-Off between Climate Impact, Avoidance of iLUC and Production Cost?," Energies, MDPI, vol. 11(10), pages 1-31, October.
    7. Andrade Díaz, Christhel & Clivot, Hugues & Albers, Ariane & Zamora-Ledezma, Ezequiel & Hamelin, Lorie, 2023. "The crop residue conundrum: Maintaining long-term soil organic carbon stocks while reinforcing the bioeconomy, compatible endeavors?," Applied Energy, Elsevier, vol. 329(C).
    8. Maximilian Kardung & Kutay Cingiz & Ortwin Costenoble & Roel Delahaye & Wim Heijman & Marko Lovrić & Myrna van Leeuwen & Robert M’Barek & Hans van Meijl & Stephan Piotrowski & Tévécia Ronzon & Johanne, 2021. "Development of the Circular Bioeconomy: Drivers and Indicators," Sustainability, MDPI, vol. 13(1), pages 1-24, January.
    9. Cherubini, Francesco & Strømman, Anders Hammer & Ulgiati, Sergio, 2011. "Influence of allocation methods on the environmental performance of biorefinery products—A case study," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1070-1077.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barrios Latorre, Sergio Alejandro & Aronsson, Helena & Björnsson, Lovisa & Viketoft, Maria & Prade, Thomas, 2024. "Exploring the benefits of intermediate crops: Is it possible to offset soil organic carbon losses caused by crop residue removal?," Agricultural Systems, Elsevier, vol. 215(C).
    2. Marcin Zbieć & Justyna Franc-Dąbrowska & Nina Drejerska, 2022. "Wood Waste Management in Europe through the Lens of the Circular Bioeconomy," Energies, MDPI, vol. 15(12), pages 1-9, June.
    3. Iris Vural Gursel & Berien Elbersen & Koen P. H. Meesters & Myrna van Leeuwen, 2022. "Defining Circular Economy Principles for Biobased Products," Sustainability, MDPI, vol. 14(19), pages 1-21, October.
    4. Arianne Provost‐Savard & Guillaume Majeau‐Bettez, 2024. "Substitution modeling can coherently be used in attributional life cycle assessments," Journal of Industrial Ecology, Yale University, vol. 28(3), pages 410-425, June.
    5. Luis Diaz‐Balteiro & Carlos Romero & Silvestre García de Jalón, 2022. "An analysis of the degree of circularity of the wood products industry in Europe," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1350-1363, August.
    6. Ana Arias & Sara González‐García & Gumersindo Feijoo & Maria Teresa Moreira, 2022. "Tannin‐based bio‐adhesives for the wood panel industry as sustainable alternatives to petrochemical resins," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 627-642, April.
    7. Vincent Smith & Justus H. H. Wesseler & David Zilberman, 2021. "New Plant Breeding Technologies: An Assessment of the Political Economy of the Regulatory Environment and Implications for Sustainability," Sustainability, MDPI, vol. 13(7), pages 1-18, March.
    8. Xavier Tanguay & Gatien Geraud Essoua Essoua & Ben Amor, 2021. "Attributional and consequential life cycle assessments in a circular economy with integration of a quality indicator: A case study of cascading wood products," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1462-1473, December.
    9. Joanicjusz Nazarko & Ewa Chodakowska & Łukasz Nazarko, 2022. "Evaluating the Transition of the European Union Member States towards a Circular Economy," Energies, MDPI, vol. 15(11), pages 1-24, May.
    10. Maria Backhouse & Malte Lühmann & Anne Tittor, 2022. "Global Inequalities in the Bioeconomy: Thinking Continuity and Change in View of the Global Soy Complex," Sustainability, MDPI, vol. 14(9), pages 1-15, May.
    11. Befort, N., 2020. "Going beyond definitions to understand tensions within the bioeconomy: The contribution of sociotechnical regimes to contested fields," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    12. Andrade Díaz, Christhel & Albers, Ariane & Zamora-Ledezma, Ezequiel & Hamelin, Lorie, 2024. "The interplay between bioeconomy and the maintenance of long-term soil organic carbon stock in agricultural soils: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    13. Nariê Rinke Dias de Souza & Bruno Colling Klein & Mateus Ferreira Chagas & Otavio Cavalett & Antonio Bonomi, 2021. "Towards Comparable Carbon Credits: Harmonization of LCA Models of Cellulosic Biofuels," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    14. Daraei, Mahsa & Avelin, Anders & Dotzauer, Erik & Thorin, Eva, 2019. "Evaluation of biofuel production integrated with existing CHP plants and the impacts on production planning of the system – A case study," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    15. Walther Zeug & Alberto Bezama & Urs Moesenfechtel & Anne Jähkel & Daniela Thrän, 2019. "Stakeholders’ Interests and Perceptions of Bioeconomy Monitoring Using a Sustainable Development Goal Framework," Sustainability, MDPI, vol. 11(6), pages 1-24, March.
    16. Fabiana Gatto & Sara Daniotti & Ilaria Re, 2021. "Driving Green Investments by Measuring Innovation Impacts. Multi-Criteria Decision Analysis for Regional Bioeconomy Growth," Sustainability, MDPI, vol. 13(21), pages 1-27, October.
    17. Xun Wei & Jie Luo & Aqing Pu & Qianqian Liu & Lei Zhang & Suowei Wu & Yan Long & Yan Leng & Zhenying Dong & Xiangyuan Wan, 2022. "From Biotechnology to Bioeconomy: A Review of Development Dynamics and Pathways," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    18. Roope Husgafvel & Daishi Sakaguchi, 2021. "Circular Economy Development in the Construction Sector in Japan," World, MDPI, vol. 3(1), pages 1-26, December.
    19. Sebastian Hinderer & Leif Brändle & Andreas Kuckertz, 2021. "Transition to a Sustainable Bioeconomy," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
    20. Olivér Ősz & Balázs Dávid & Máté Hegyháti, 2023. "Comparison of discrete- and continuous-time models for scheduling waste wood processing facilities," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 853-871, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:circec:v:5:y:2025:i:1:d:10.1007_s43615-024-00428-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.