IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v30y2022i2d10.1007_s10100-021-00759-0.html
   My bibliography  Save this article

Vehicle routing problem with uniform private fleet and common carrier: a node subset heuristic

Author

Listed:
  • Jan Pelikán

    (Prague University of Economics and Business)

  • Petr Štourač

    (Prague University of Economics and Business)

  • Ondřej Sokol

    (Prague University of Economics and Business)

Abstract

Optimizing the distribution of goods to customers is discussed on non-split delivery modification of vehicle routing problem with uniform private fleet and common carrier. While private fleet costs are proportional to the sum of distances traveled by its vehicles, common carrier has no capacity limit and costs are proportional to the quantity of transported goods only. We show the transformation of the model onto the vehicle routing problem with optional enter and propose a modified insert heuristic. The main contribution is a node subset heuristic based on dividing nodes into two subsets. The heuristic uses the node pre-selection for the private fleet while the rest is served by the common carrier. In the second step, both subsets are solved separately. The performance of the integer linear program and both proposed heuristics are compared on testing instances. Both heuristics can be used for finding the initial solution which can be further improved by local search methods.

Suggested Citation

  • Jan Pelikán & Petr Štourač & Ondřej Sokol, 2022. "Vehicle routing problem with uniform private fleet and common carrier: a node subset heuristic," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 683-697, June.
  • Handle: RePEc:spr:cejnor:v:30:y:2022:i:2:d:10.1007_s10100-021-00759-0
    DOI: 10.1007/s10100-021-00759-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-021-00759-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-021-00759-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    2. J Euchi & H Chabchoub, 2011. "Hybrid metaheuristics for the profitable arc tour problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 2013-2022, November.
    3. Côté, Jean-François & Potvin, Jean-Yves, 2009. "A tabu search heuristic for the vehicle routing problem with private fleet and common carrier," European Journal of Operational Research, Elsevier, vol. 198(2), pages 464-469, October.
    4. Bolduc, Marie-Claude & Renaud, Jacques & Boctor, Fayez, 2007. "A heuristic for the routing and carrier selection problem," European Journal of Operational Research, Elsevier, vol. 183(2), pages 926-932, December.
    5. Soumen Kumar Das & Sankar Kumar Roy & Gerhard Wilhelm Weber, 2020. "Heuristic approaches for solid transportation-p-facility location problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 939-961, September.
    6. J Euchi & H Chabchoub, 2011. "Hybrid metaheuristics for the profitable arc tour problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 2013-2022, November.
    7. Chu, Ching-Wu, 2005. "A heuristic algorithm for the truckload and less-than-truckload problem," European Journal of Operational Research, Elsevier, vol. 165(3), pages 657-667, September.
    8. Said Dabia & David Lai & Daniele Vigo, 2019. "An Exact Algorithm for a Rich Vehicle Routing Problem with Private Fleet and Common Carrier," Transportation Science, INFORMS, vol. 53(4), pages 986-1000, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Stenger & Daniele Vigo & Steffen Enz & Michael Schwind, 2013. "An Adaptive Variable Neighborhood Search Algorithm for a Vehicle Routing Problem Arising in Small Package Shipping," Transportation Science, INFORMS, vol. 47(1), pages 64-80, February.
    2. Zhenzhen Zhang & Zhixing Luo & Hu Qin & Andrew Lim, 2019. "Exact Algorithms for the Vehicle Routing Problem with Time Windows and Combinatorial Auction," Transportation Science, INFORMS, vol. 53(2), pages 427-441, March.
    3. Gahm, Christian & Brabänder, Christian & Tuma, Axel, 2017. "Vehicle routing with private fleet, multiple common carriers offering volume discounts, and rental options," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 192-216.
    4. Liu, Ran & Jiang, Zhibin, 2012. "The close–open mixed vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 220(2), pages 349-360.
    5. Bertazzi, Luca & Bosco, Adamo & Laganà, Demetrio, 2015. "Managing stochastic demand in an Inventory Routing Problem with transportation procurement," Omega, Elsevier, vol. 56(C), pages 112-121.
    6. J-Y Potvin & M-A Naud, 2011. "Tabu search with ejection chains for the vehicle routing problem with private fleet and common carrier," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 326-336, February.
    7. Burcu B. Keskin & İbrahim Çapar & Charles R. Sox & Nickolas K. Freeman, 2014. "An Integrated Load-Planning Algorithm for Outbound Logistics at Webb Wheel," Interfaces, INFORMS, vol. 44(5), pages 480-497, October.
    8. Wang, Xin & Kopfer, Herbert & Gendreau, Michel, 2014. "Operational transportation planning of freight forwarding companies in horizontal coalitions," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1133-1141.
    9. Annelieke C. Baller & Said Dabia & Wout E. H. Dullaert & Daniele Vigo, 2020. "The Vehicle Routing Problem with Partial Outsourcing," Transportation Science, INFORMS, vol. 54(4), pages 1034-1052, July.
    10. Said Dabia & David Lai & Daniele Vigo, 2019. "An Exact Algorithm for a Rich Vehicle Routing Problem with Private Fleet and Common Carrier," Transportation Science, INFORMS, vol. 53(4), pages 986-1000, July.
    11. Ziebuhr, Mario & Kopfer, Herbert, 2016. "Solving an integrated operational transportation planning problem with forwarding limitations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 149-166.
    12. Thibaut Vidal & Nelson Maculan & Luiz Satoru Ochi & Puca Huachi Vaz Penna, 2016. "Large Neighborhoods with Implicit Customer Selection for Vehicle Routing Problems with Profits," Transportation Science, INFORMS, vol. 50(2), pages 720-734, May.
    13. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "Thirty years of heterogeneous vehicle routing," European Journal of Operational Research, Elsevier, vol. 249(1), pages 1-21.
    14. Oscar Dominguez & Angel A. Juan & Barry Barrios & Javier Faulin & Alba Agustin, 2016. "Using biased randomization for solving the two-dimensional loading vehicle routing problem with heterogeneous fleet," Annals of Operations Research, Springer, vol. 236(2), pages 383-404, January.
    15. Archetti, Claudia & Corberán, Ángel & Plana, Isaac & Sanchis, José Maria & Speranza, M. Grazia, 2015. "A matheuristic for the Team Orienteering Arc Routing Problem," European Journal of Operational Research, Elsevier, vol. 245(2), pages 392-401.
    16. Ávila, Thais & Corberán, Ángel & Plana, Isaac & Sanchis, José M., 2016. "A branch-and-cut algorithm for the profitable windy rural postman problem," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1092-1101.
    17. Bolduc, Marie-Claude & Renaud, Jacques & Boctor, Fayez, 2007. "A heuristic for the routing and carrier selection problem," European Journal of Operational Research, Elsevier, vol. 183(2), pages 926-932, December.
    18. Wang, Congke & Liu, Yankui & Yang, Guoqing, 2023. "Adaptive distributionally robust hub location and routing problem with a third-party logistics strategy," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    19. Li, Hongqi & Chang, Xinyu & Zhao, Wencong & Lu, Yingrong, 2017. "The vehicle flow formulation and savings-based algorithm for the rollon-rolloff vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 257(3), pages 859-869.
    20. Oscar Dominguez & Angel Juan & Barry Barrios & Javier Faulin & Alba Agustin, 2016. "Using biased randomization for solving the two-dimensional loading vehicle routing problem with heterogeneous fleet," Annals of Operations Research, Springer, vol. 236(2), pages 383-404, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:30:y:2022:i:2:d:10.1007_s10100-021-00759-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.