IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v23y2015i3p641-658.html
   My bibliography  Save this article

Location and relocation problems in the context of the emergency medical service systems: a case study

Author

Listed:
  • Mahdi Moeini
  • Zied Jemai
  • Evren Sahin

Abstract

In this paper, we address the dynamic emergency medical service (EMS) systems. A dynamic location model is presented for locating and relocating a fleet of ambulances. The proposed model can control the movements and locations of ambulances in order to provide a better coverage of the demand points. The model can keep this ability under different fluctuation patterns that may happen during a given period of time. A number of numerical experiments have been carried out by using some real-world data sets. They have been collected through the French EMS system at the Hospital Henri Mondor, France. Finally, we present a comparison between the results of the introduced model and the outputs of a classical EMS dynamic location model. According to the observations, the introduced model provides a better coverage of the EMS demands. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Mahdi Moeini & Zied Jemai & Evren Sahin, 2015. "Location and relocation problems in the context of the emergency medical service systems: a case study," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(3), pages 641-658, September.
  • Handle: RePEc:spr:cejnor:v:23:y:2015:i:3:p:641-658
    DOI: 10.1007/s10100-014-0374-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-014-0374-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-014-0374-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beraldi, P. & Bruni, M. E. & Conforti, D., 2004. "Designing robust emergency medical service via stochastic programming," European Journal of Operational Research, Elsevier, vol. 158(1), pages 183-193, October.
    2. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    3. Martin Dlouhý & Stefan Pickl & Marion Rauner & Ulrike Leopold-Wildburger, 2009. "Special Issue on “Innovative Approaches for Decision Analysis in Energy, Health, and Life Sciences”," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 17(3), pages 229-231, September.
    4. Rajan Batta & June M. Dolan & Nirup N. Krishnamurthy, 1989. "The Maximal Expected Covering Location Problem: Revisited," Transportation Science, INFORMS, vol. 23(4), pages 277-287, November.
    5. Mark S. Daskin & Edmund H. Stern, 1981. "A Hierarchical Objective Set Covering Model for Emergency Medical Service Vehicle Deployment," Transportation Science, INFORMS, vol. 15(2), pages 137-152, May.
    6. Roberto Aringhieri, 2009. "Composing medical crews with equity and efficiency," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 17(3), pages 343-357, September.
    7. Storbeck, James E., 1982. "Slack, natural slack, and location covering," Socio-Economic Planning Sciences, Elsevier, vol. 16(3), pages 99-105.
    8. Brotcorne, Luce & Laporte, Gilbert & Semet, Frederic, 2003. "Ambulance location and relocation models," European Journal of Operational Research, Elsevier, vol. 147(3), pages 451-463, June.
    9. Kathleen Hogan & Charles ReVelle, 1986. "Concepts and Applications of Backup Coverage," Management Science, INFORMS, vol. 32(11), pages 1434-1444, November.
    10. Rouselle Lavado & Emilyn Cabanda, 2009. "The efficiency of health and education expenditures in the Philippines," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 17(3), pages 275-291, September.
    11. Beraldi, P. & Bruni, M.E., 2009. "A probabilistic model applied to emergency service vehicle location," European Journal of Operational Research, Elsevier, vol. 196(1), pages 323-331, July.
    12. Charles ReVelle & Kathleen Hogan, 1989. "The Maximum Availability Location Problem," Transportation Science, INFORMS, vol. 23(3), pages 192-200, August.
    13. Schmid, Verena & Doerner, Karl F., 2010. "Ambulance location and relocation problems with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1293-1303, December.
    14. Michael O. Ball & Feng L. Lin, 1993. "A Reliability Model Applied to Emergency Service Vehicle Location," Operations Research, INFORMS, vol. 41(1), pages 18-36, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fadda, Edoardo & Manerba, Daniele & Tadei, Roberto, 2024. "How to locate services optimizing redundancy: A comparative analysis of K-Covering Facility Location models," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    2. Zhao, Taiyi & Tang, Yuchun & Li, Qiming & Wang, Jingquan, 2023. "Resilience-oriented network reconfiguration strategies for community emergency medical services," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Tibor Csendes & Lidija Zadnik Stirn & Janez Žerovnik, 2015. "Editorial," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(3), pages 523-525, September.
    4. Andrej Kastrin & Janez Povh & Lidija Zadnik Stirn & Janez Žerovnik, 2021. "Methodologies and applications for resilient global development from the aspect of SDI-SOR special issues of CJOR," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 773-790, September.
    5. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    6. Marion S. Rauner & Helmut Niessner & Steen Odd & Andrew Pope & Karen Neville & Sheila O’Riordan & Lisa Sasse & Kristina Tomic, 2018. "An advanced decision support system for European disaster management: the feature of the skills taxonomy," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(2), pages 485-530, June.
    7. Yusuf Kuvvetli, 2023. "A goal programming model for two-stage COVID19 test sampling centers location-allocation problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(1), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    2. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    3. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    4. Bertsimas, Dimitris & Ng, Yeesian, 2019. "Robust and stochastic formulations for ambulance deployment and dispatch," European Journal of Operational Research, Elsevier, vol. 279(2), pages 557-571.
    5. Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.
    6. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    7. Shayesta Wajid & N. Nezamuddin, 2023. "Optimizing emergency services for road safety using a decomposition method: a case study of Delhi," OPSEARCH, Springer;Operational Research Society of India, vol. 60(1), pages 155-173, March.
    8. M Gendreau & G Laporte & F Semet, 2006. "The maximal expected coverage relocation problem for emergency vehicles," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 22-28, January.
    9. Cheng, Yung-Hsiang & Liang, Zheng-Xian, 2014. "A strategic planning model for the railway system accident rescue problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 75-96.
    10. Sorensen, Paul & Church, Richard, 2010. "Integrating expected coverage and local reliability for emergency medical services location problems," Socio-Economic Planning Sciences, Elsevier, vol. 44(1), pages 8-18, March.
    11. Sun Hoon Kim & Young Hoon Lee, 2016. "Iterative optimization algorithm with parameter estimation for the ambulance location problem," Health Care Management Science, Springer, vol. 19(4), pages 362-382, December.
    12. Beraldi, P. & Bruni, M.E., 2009. "A probabilistic model applied to emergency service vehicle location," European Journal of Operational Research, Elsevier, vol. 196(1), pages 323-331, July.
    13. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    14. Su, Qiang & Luo, Qinyi & Huang, Samuel H., 2015. "Cost-effective analyses for emergency medical services deployment: A case study in Shanghai," International Journal of Production Economics, Elsevier, vol. 163(C), pages 112-123.
    15. Nilay Noyan, 2010. "Alternate risk measures for emergency medical service system design," Annals of Operations Research, Springer, vol. 181(1), pages 559-589, December.
    16. Sunarin Chanta & Maria Mayorga & Laura McLay, 2014. "Improving emergency service in rural areas: a bi-objective covering location model for EMS systems," Annals of Operations Research, Springer, vol. 221(1), pages 133-159, October.
    17. Brotcorne, Luce & Laporte, Gilbert & Semet, Frederic, 2003. "Ambulance location and relocation models," European Journal of Operational Research, Elsevier, vol. 147(3), pages 451-463, June.
    18. Dirk Degel & Lara Wiesche & Sebastian Rachuba & Brigitte Werners, 2015. "Time-dependent ambulance allocation considering data-driven empirically required coverage," Health Care Management Science, Springer, vol. 18(4), pages 444-458, December.
    19. Marianov, Vladimir & Eiselt, H.A., 2024. "Fifty Years of Location Theory - A Selective Review," European Journal of Operational Research, Elsevier, vol. 318(3), pages 701-718.
    20. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:23:y:2015:i:3:p:641-658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.