IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v19y2011i3p285-298.html
   My bibliography  Save this article

Job scheduling with forbidden setups and two objectives using genetic algorithms and penalties

Author

Listed:
  • Karsten Hentsch
  • Peter Köchel

Abstract

One of the most important tasks in service and manufacturing systems is how to schedule arriving jobs such that some criteria will be satisfied. Up to now there have been defined a great variety of scheduling problems as well as corresponding models and solution approaches. Most models suffer from such more or less restrictive assumptions like single machine, unique processing times, zero set-up times or a single criterion. On the other hand some classical approaches like linear or dynamic programming are practicable for small-size problems only. Therefore over the past years we can observe an increasing application of heuristic search methods. But scheduling problems with multiple machines, forbidden setups and multiple objectives are scarcely considered. In our paper we apply a Genetic Algorithm to such a problem which was found at a continuous casting plant. Because of the forbidden setups the probability for a random generated schedule to be feasible is nearly zero. To resolve this problem we use three kinds of penalties, a global, a local and a combined approach. For performance investigations of these penalty types we applied our approaches to a real world test instance with 96 jobs, three machines and two objectives. We tested five different penalty levels with 51 independent runs to evaluate the impact of the penalties. Copyright Springer-Verlag 2011

Suggested Citation

  • Karsten Hentsch & Peter Köchel, 2011. "Job scheduling with forbidden setups and two objectives using genetic algorithms and penalties," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(3), pages 285-298, September.
  • Handle: RePEc:spr:cejnor:v:19:y:2011:i:3:p:285-298
    DOI: 10.1007/s10100-010-0162-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-010-0162-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-010-0162-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jens Heger & Torsten Hildebrandt & Bernd Scholz-Reiter, 2015. "Dispatching rule selection with Gaussian processes," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(1), pages 235-249, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:19:y:2011:i:3:p:285-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.