IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v16y2008i4p331-343.html
   My bibliography  Save this article

An algorithm for the capacitated vehicle routing problem with route balancing

Author

Listed:
  • István Borgulya

Abstract

In this paper, we present a multi-objective evolutionary algorithm for the capacitated vehicle routing problem with route balancing. The algorithm is based on a formerly developed multi-objective algorithm using an explicit collective memory method, namely the extended virtual loser (EVL). We adapted and improved the algorithm and the EVL method for this problem. We achieved good results with this simple technique. In case of this problem the quality of the results of the algorithm is similar to that of other evolutionary algorithms. Copyright Springer-Verlag 2008

Suggested Citation

  • István Borgulya, 2008. "An algorithm for the capacitated vehicle routing problem with route balancing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(4), pages 331-343, December.
  • Handle: RePEc:spr:cejnor:v:16:y:2008:i:4:p:331-343
    DOI: 10.1007/s10100-008-0062-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-008-0062-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-008-0062-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J Berger & M Barkaoui, 2003. "A new hybrid genetic algorithm for the capacitated vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(12), pages 1254-1262, December.
    2. Rita Ribeiro & Helena Ramalhinho-Lourenço, 2001. "A multi-objective model for a multi-period distribution management problem," Economics Working Papers 532, Department of Economics and Business, Universitat Pompeu Fabra.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lehuédé, Fabien & Péton, Olivier & Tricoire, Fabien, 2020. "A lexicographic minimax approach to the vehicle routing problem with route balancing," European Journal of Operational Research, Elsevier, vol. 282(1), pages 129-147.
    2. Petr Kučera, 2012. "Different versions of the savings method for the time limited vehicle routing problem," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 60(7), pages 171-178.
    3. Rodrigo Linfati & Fernando Yáñez-Concha & John Willmer Escobar, 2022. "Mathematical Models for the Vehicle Routing Problem by Considering Balancing Load and Customer Compactness," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    4. Halvorsen-Weare, Elin E. & Savelsbergh, Martin W.P., 2016. "The bi-objective mixed capacitated general routing problem with different route balance criteria," European Journal of Operational Research, Elsevier, vol. 251(2), pages 451-465.
    5. P. Matl & R. F. Hartl & T. Vidal, 2018. "Workload Equity in Vehicle Routing Problems: A Survey and Analysis," Transportation Science, INFORMS, vol. 52(2), pages 239-260, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Manlin & Hu, Yucong & Chen, Zhiwei & Li, Xiaopeng, 2021. "Transfer-based customized modular bus system design with passenger-route assignment optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    2. Jozefowiez, Nicolas & Semet, Frédéric & Talbi, El-Ghazali, 2009. "An evolutionary algorithm for the vehicle routing problem with route balancing," European Journal of Operational Research, Elsevier, vol. 195(3), pages 761-769, June.
    3. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    4. A A Juan & J Faulin & J Jorba & D Riera & D Masip & B Barrios, 2011. "On the use of Monte Carlo simulation, cache and splitting techniques to improve the Clarke and Wright savings heuristics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1085-1097, June.
    5. Jose Escribano Macias & Nils Goldbeck & Pei-Yuan Hsu & Panagiotis Angeloudis & Washington Ochieng, 2020. "Endogenous stochastic optimisation for relief distribution assisted with unmanned aerial vehicles," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 1089-1125, December.
    6. Jin Qin & Yong Ye & Bi-rong Cheng & Xiaobo Zhao & Linling Ni, 2017. "The Emergency Vehicle Routing Problem with Uncertain Demand under Sustainability Environments," Sustainability, MDPI, vol. 9(2), pages 1-24, February.
    7. repec:spr:compst:v:68:y:2008:i:2:p:361-382 is not listed on IDEAS
    8. Guido Perboli & Ferdinando Pezzella & Roberto Tadei, 2008. "EVE-OPT: a hybrid algorithm for the capacitated vehicle routing problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(2), pages 361-382, October.
    9. Halvorsen-Weare, Elin E. & Savelsbergh, Martin W.P., 2016. "The bi-objective mixed capacitated general routing problem with different route balance criteria," European Journal of Operational Research, Elsevier, vol. 251(2), pages 451-465.
    10. Hao Zhang & Yan Cui & Hepu Deng & Shuxian Cui & Huijia Mu, 2021. "An Improved Genetic Algorithm for the Optimal Distribution of Fresh Products under Uncertain Demand," Mathematics, MDPI, vol. 9(18), pages 1-18, September.
    11. F Alonso & M J Alvarez & J E Beasley, 2008. "A tabu search algorithm for the periodic vehicle routing problem with multiple vehicle trips and accessibility restrictions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(7), pages 963-976, July.
    12. Helena Ramalhinho-Lourenço, 2001. "Supply chain management: An opportunity for metaheuristics," Economics Working Papers 538, Department of Economics and Business, Universitat Pompeu Fabra.
    13. P. Matl & R. F. Hartl & T. Vidal, 2018. "Workload Equity in Vehicle Routing Problems: A Survey and Analysis," Transportation Science, INFORMS, vol. 52(2), pages 239-260, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:16:y:2008:i:4:p:331-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.