Decision Support for the Automotive Industry
Author
Abstract
Suggested Citation
DOI: 10.1007/s12599-018-0527-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Michael H. Breitner & Christian Dunis & Hans-Jörg Mettenheim & Christopher Neely & Georgios Sermpinis & Christian Spreckelsen & Hans‐Jörg Mettenheim & Michael H. Breitner, 2014. "Real‐Time Pricing and Hedging of Options on Currency Futures with Artificial Neural Networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(6), pages 419-432, September.
- Sylvain M. Prado, 2009.
"The European used-car market at a glance: Hedonic resale price valuation in automotive leasing industry,"
Economics Bulletin, AccessEcon, vol. 29(3), pages 2086-2099.
- Sylvain Prado, 2009. "The European used-car market at a glance: Hedonic resale price valuation in automotive leasing industry," EconomiX Working Papers 2009-22, University of Paris Nanterre, EconomiX.
- Sylvain Prado, 2009. "The European used-car market at a glance: Hedonic resale price valuation in automotive leasing industry," Working Papers hal-04140873, HAL.
- Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
- Karl Storchmann, 2004. "On the Depreciation of Automobiles: An International Comparison," Transportation, Springer, vol. 31(4), pages 371-408, November.
- Sermpinis, Georgios & Stasinakis, Charalampos & Dunis, Christian, 2014. "Stochastic and genetic neural network combinations in trading and hybrid time-varying leverage effects," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 30(C), pages 21-54.
- L. Smith & Baiqiang Jin, 2007. "Modeling exposure to losses on automobile leases," Review of Quantitative Finance and Accounting, Springer, vol. 29(3), pages 241-266, October.
- Prado, Sylvain Michael & Ananth, Ram, 2012. "Breaking Through Risk Management, a Derivative for the Leasing Industry," Journal of Financial Transformation, Capco Institute, vol. 34, pages 211-218.
- Cornelius Köpp & Hans-Jörg Mettenheim & Michael Breitner, 2014. "Decision Analytics with Heatmap Visualization for Multi-step Ensemble Data," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 6(3), pages 131-140, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Renxi Gong & Siqiang Li & Weiyu Peng, 2020. "Research on Multi-Attribute Decision-Making in Condition-Based Maintenance for Power Transformers Based on Cloud and Kernel Vector Space Models," Energies, MDPI, vol. 13(22), pages 1-11, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Roman Matkovskyy & Taoufik Bouraoui, 2019.
"Application of Neural Networks to Short Time Series Composite Indexes: Evidence from the Nonlinear Autoregressive with Exogenous Inputs (NARX) Model,"
Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 433-446, June.
- Roman Matkovskyy & Taoufik Bouraoui, 2019. "Application of Neural Networks to Short Time Series Composite Indexes: Evidence from the Nonlinear Autoregressive with Exogenous Inputs (NARX) Model," Post-Print hal-02155402, HAL.
- Shin, Ki-Hong & Baek, Woonhak & Kim, Kyungsik & You, Cheol-Hwan & Chang, Ki-Ho & Lee, Dong-In & Yum, Seong Soo, 2019. "Neural network and regression methods for optimizations between two meteorological factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 778-796.
- Oscar Claveria & Enric Monte & Salvador Torra, 2017.
"“Regional tourism demand forecasting with machine learning models: Gaussian process regression vs. neural network models in a multiple-input multiple-output setting”,"
AQR Working Papers
201701, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2017.
- Oscar Claveria & Enric Monte & Salvador Torra, 2017. "“Regional tourism demand forecasting with machine learning models: Gaussian process regression vs. neural network models in a multiple-input multiple-output setting"," IREA Working Papers 201701, University of Barcelona, Research Institute of Applied Economics, revised Jan 2017.
- Dress, Korbinian & Lessmann, Stefan & von Mettenheim, Hans-Jörg, 2018. "Residual value forecasting using asymmetric cost functions," International Journal of Forecasting, Elsevier, vol. 34(4), pages 551-565.
- Georgios Sermpinis & Andreas Karathanasopoulos & Rafael Rosillo & David Fuente, 2021. "Neural networks in financial trading," Annals of Operations Research, Springer, vol. 297(1), pages 293-308, February.
- Jonathan Fabián Dato & Matías Gabriel Dinápoli & Enrique Eduardo D’Onofrio & Claudia Gloria Simionato, 2024. "On water level forecasting using artificial neural networks: the case of the Río de la Plata Estuary, Argentina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 9753-9776, September.
- Golnoosh Babaei & Shahrooz Bamdad, 2021. "A New Hybrid Instance-Based Learning Model for Decision-Making in the P2P Lending Market," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 419-432, January.
- Balkin, Sandy, 2001. "On Forecasting Exchange Rates Using Neural Networks: P.H. Franses and P.V. Homelen, 1998, Applied Financial Economics, 8, 589-596," International Journal of Forecasting, Elsevier, vol. 17(1), pages 139-140.
- Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
- Daniel Buncic, 2012.
"Understanding forecast failure of ESTAR models of real exchange rates,"
Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
- Daniel Buncic, 2009. "Understanding forecast failure of ESTAR models of real exchange rates," EERI Research Paper Series EERI_RP_2009_18, Economics and Econometrics Research Institute (EERI), Brussels.
- Buncic, Daniel, 2009. "Understanding forecast failure in ESTAR models of real exchange rates," MPRA Paper 13121, University Library of Munich, Germany.
- Buncic, Daniel, 2009. "Understanding forecast failure of ESTAR models of real exchange rates," MPRA Paper 16526, University Library of Munich, Germany.
- Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023.
"Forecasting mid-price movement of Bitcoin futures using machine learning,"
Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
- Akyildirim, Erdinc & Cepni, Oguzhan & Corbet, Shaen & Uddin, Gazi Salah, 2020. "Forecasting Mid-price Movement of Bitcoin Futures Using Machine Learning," Working Papers 20-2020, Copenhagen Business School, Department of Economics.
- Apostolos Ampountolas & Titus Nyarko Nde & Paresh Date & Corina Constantinescu, 2021. "A Machine Learning Approach for Micro-Credit Scoring," Risks, MDPI, vol. 9(3), pages 1-20, March.
- Peng Zhu & Yuante Li & Yifan Hu & Qinyuan Liu & Dawei Cheng & Yuqi Liang, 2024. "LSR-IGRU: Stock Trend Prediction Based on Long Short-Term Relationships and Improved GRU," Papers 2409.08282, arXiv.org, revised Sep 2024.
- James R. Coakley & Carol E. Brown, 2000. "Artificial neural networks in accounting and finance: modeling issues," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 9(2), pages 119-144, June.
- Mengyang Wang & Hui Wang & Jiao Wang & Hongwei Liu & Rui Lu & Tongqing Duan & Xiaowen Gong & Siyuan Feng & Yuanyuan Liu & Zhuang Cui & Changping Li & Jun Ma, 2019. "A novel model for malaria prediction based on ensemble algorithms," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-15, December.
- Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011.
"Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816, July.
- Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011. "Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange," International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816.
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
- Amuktamalyada Gorlapalli & Supriya Kallakuri & Pagadala Damodaram Sreekanth & Rahul Patil & Nirmala Bandumula & Gabrijel Ondrasek & Meena Admala & Channappa Gireesh & Madhyavenkatapura Siddaiah Ananth, 2022. "Characterization and Prediction of Water Stress Using Time Series and Artificial Intelligence Models," Sustainability, MDPI, vol. 14(11), pages 1-18, May.
- Khurshid M. KIANI & Terry L. KASTENS, 2006. "Using Macro-Financial Variables To Forecast Recessions. An Analysis Of Canada, 1957-2002," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 6(3).
- X. Ajay Vasanth & P. Sam Paul & A. S. Varadarajan, 0. "A neural network model to predict surface roughness during turning of hardened SS410 steel," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-12.
More about this item
Keywords
Decision support systems; Business intelligence; Artificial neural networks; Residual value forecasts; Car leasing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:binfse:v:61:y:2019:i:4:d:10.1007_s12599-018-0527-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.