IDEAS home Printed from https://ideas.repec.org/a/spr/astaws/v12y2018i2d10.1007_s11943-018-0224-1.html
   My bibliography  Save this article

Verfahren zur Überwachung räumlicher autoregressiver Prozesse mit externen Regressoren
[Statistical surveillance of spatial autoregressive processes with exogenous regressors]

Author

Listed:
  • Robert Garthoff

    (Europa-Universität Viadrina)

  • Philipp Otto

    (Europa-Universität Viadrina)

Abstract

Zusammenfassung Der vorliegende Beitrag befasst sich mit der statistischen Prozesskontrolle räumlicher autoregressiver Prozesse mit externen Regressoren. Das Ziel ist die Weiterentwicklung etablierter Methoden der zeitlichen Prozesskontrolle. Diese Ansätze werden für Anwendungen in der räumlichen Prozesskontrolle modifiziert. Wir illustrieren dieses Vorgehen anhand eines sozialstatistischen Beispiels, welches sich mit der Bevölkerungsentwicklung in den Landkreisen und Kreisfreien Städten der Bundesrepublik Deutschland befasst. Mittels Faktorenanalyse werden zunächst nicht beobachtbare Variablen basierend auf den zuvor gewählten manifesten Variablen identifiziert, denn für die nachfolgende Analyse sind voneinander unabhängige Faktoren erforderlich. Daraufhin sind anhand einer Clusteranalyse die Regionen in Gruppen einzuteilen. Mit Hilfe der gebildeten Cluster sind diejenigen Regionen, welche die Grundlage der Modellanpassung darstellen, im Zustand unter Kontrolle auszuwählen. Anhand der zuvor ermittelten Faktorwerte erfolgt eine Modellanpassung mit Hilfe der verallgemeinerten Momenten-Methode. Im Rahmen der statistischen Prozesskontrolle werden in einem weiteren Schritt multivariate Kontrollkarten basierend auf entweder exponentieller Glättung oder kumulierter Summe herangezogen, um Kreise außerhalb der Region im Zustand unter Kontrolle hinsichtlich ihres Kontrollzustandes zu beurteilen. Wir stellen verschiedene Ansätze vor, um die zu überwachenden Regionen für eine Prozesskontrolle zu sortieren. Schlussendlich möchten wir zeigen, dass die modifizierten Kontrollkarten strukturelle Veränderungen in Bezug auf ein zuvor geschätztes Modell signalisieren, ohne dass eine permanente Schätzung erforderlich ist.

Suggested Citation

  • Robert Garthoff & Philipp Otto, 2018. "Verfahren zur Überwachung räumlicher autoregressiver Prozesse mit externen Regressoren [Statistical surveillance of spatial autoregressive processes with exogenous regressors]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 12(2), pages 107-133, September.
  • Handle: RePEc:spr:astaws:v:12:y:2018:i:2:d:10.1007_s11943-018-0224-1
    DOI: 10.1007/s11943-018-0224-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11943-018-0224-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11943-018-0224-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Henry Kaiser, 1958. "The varimax criterion for analytic rotation in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(3), pages 187-200, September.
    4. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    5. Blommestein, Hans J., 1983. "Specification and estimation of spatial econometric models : A discussion of alternative strategies for spatial economic modelling," Regional Science and Urban Economics, Elsevier, vol. 13(2), pages 251-270, May.
    6. Olha Bodnar & Wolfgang Schmid, 2007. "Surveillance of the mean behavior of multivariate time series," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 61(4), pages 383-406, November.
    7. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    8. Robert Garthoff & Philipp Otto, 2017. "Control charts for multivariate spatial autoregressive models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(1), pages 67-94, January.
    9. Robert Garthoff & Iryna Okhrin & Wolfgang Schmid, 2014. "Statistical surveillance of the mean vector and the covariance matrix of nonlinear time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(3), pages 225-255, July.
    10. Lee, Lung-fei & Liu, Xiaodong, 2010. "Efficient Gmm Estimation Of High Order Spatial Autoregressive Models With Autoregressive Disturbances," Econometric Theory, Cambridge University Press, vol. 26(1), pages 187-230, February.
    11. Lee, Lung-Fei, 2002. "Consistency And Efficiency Of Least Squares Estimation For Mixed Regressive, Spatial Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 252-277, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timo Schmid & Markus Zwick, 2018. "Vorwort der Herausgeber," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 12(2), pages 83-85, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    2. Gupta, Abhimanyu, 2023. "Efficient closed-form estimation of large spatial autoregressions," Journal of Econometrics, Elsevier, vol. 232(1), pages 148-167.
    3. Gupta, Abhimanyu & Robinson, Peter M., 2018. "Pseudo maximum likelihood estimation of spatial autoregressive models with increasing dimension," Journal of Econometrics, Elsevier, vol. 202(1), pages 92-107.
    4. Gibbons, Steve & Overman, Henry G. & Patacchini, Eleonora, 2015. "Spatial Methods," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 115-168, Elsevier.
    5. Gupta, Abhimanyu, 2019. "Estimation Of Spatial Autoregressions With Stochastic Weight Matrices," Econometric Theory, Cambridge University Press, vol. 35(2), pages 417-463, April.
    6. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    7. Liu, Xiaodong & Lee, Lung-fei, 2010. "GMM estimation of social interaction models with centrality," Journal of Econometrics, Elsevier, vol. 159(1), pages 99-115, November.
    8. repec:esx:essedp:772 is not listed on IDEAS
    9. Jin, Fei & Lee, Lung-fei, 2012. "Approximated likelihood and root estimators for spatial interaction in spatial autoregressive models," Regional Science and Urban Economics, Elsevier, vol. 42(3), pages 446-458.
    10. Lee, Lung-fei, 2007. "The method of elimination and substitution in the GMM estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 140(1), pages 155-189, September.
    11. repec:asg:wpaper:1013 is not listed on IDEAS
    12. Elhorst, J. Paul & Lacombe, Donald J. & Piras, Gianfranco, 2012. "On model specification and parameter space definitions in higher order spatial econometric models," Regional Science and Urban Economics, Elsevier, vol. 42(1-2), pages 211-220.
    13. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    14. Shew Fan Liu & Zhenlin Yang, 2015. "Asymptotic Distribution and Finite Sample Bias Correction of QML Estimators for Spatial Error Dependence Model," Econometrics, MDPI, vol. 3(2), pages 1-36, May.
    15. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    16. Su, Liangjun, 2012. "Semiparametric GMM estimation of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 167(2), pages 543-560.
    17. Théophile Azomahou, 2008. "Minimum distance estimation of the spatial panel autoregressive model," Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 2(1), pages 49-83, April.
    18. Lee, Jungyoon & Robinson, Peter M., 2016. "Series estimation under cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 190(1), pages 1-17.
    19. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2022. "Bayesian estimation of multivariate panel probits with higher‐order network interdependence and an application to firms' global market participation in Guangdong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1356-1378, November.
    20. Peter M Robinson, 2009. "Developments in the Analysis of Spatial Data," STICERD - Econometrics Paper Series 531, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    21. Liu, Xiaodong & Saraiva, Paulo, 2015. "GMM estimation of SAR models with endogenous regressors," Regional Science and Urban Economics, Elsevier, vol. 55(C), pages 68-79.
    22. Liu, Shew Fan & Yang, Zhenlin, 2015. "Modified QML estimation of spatial autoregressive models with unknown heteroskedasticity and nonnormality," Regional Science and Urban Economics, Elsevier, vol. 52(C), pages 50-70.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:astaws:v:12:y:2018:i:2:d:10.1007_s11943-018-0224-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.