IDEAS home Printed from https://ideas.repec.org/a/spr/apjors/v1y2017i2d10.1007_s41685-017-0044-2.html
   My bibliography  Save this article

Economic and environmental impacts of agricultural and rural development projects in Japan: evidence from an interregional input–output analysis

Author

Listed:
  • Tatsuki Ueda

    (National Agriculture and Food Research Organization)

  • Yoji Kunimitsu

    (National Agriculture and Food Research Organization)

Abstract

Over the past centuries, Japan has developed a distinguished system for irrigated rice culture through cooperation of civil engineering and farming. This system has evolved into public works called the Agricultural Infrastructure Improvement and Rural Development Projects (A&R). We investigated the economic and environmental impacts of A&R using an interregional input–output (IRIO) analysis, with a limited scope on the construction stage. We incorporated an unpublished database on A&R into published IRIO tables to compile a public-work (PW) extended IRIO. The results showed that: (1) PW, particularly A&R, had greater impacts on regional economies of remote regions; and (2) major GHG-emitting input sectors included construction materials, oil/coal products, electricity, transport, as well as fossil-fuel consumptions by PW themselves. Furthermore, scenario analyses, in which PW sectors must suffer a budget cut, were conducted. The results suggested that the national government may well choose different budget allocations according to their objectives. If they aimed to minimize regional discrepancies in economic development, then lighter budget cuts should be imposed on remote regions. Meanwhile, if they aimed at minimizing the losses of National Total Outputs or maximizing the national GHG reduction, then they would face a trade-off, which stemmed from a strong proportional linkage between the outputs and the GHG emissions of PW. To moderate such a trade-off, technological structures of PW should be innovated, including: (1) increase energy efficiency (i.e., reduce consumption of electricity and fossil fuels); (2) reduce construction materials where possible or procure low emission-intensive materials; and (3) reduce wasted materials.

Suggested Citation

  • Tatsuki Ueda & Yoji Kunimitsu, 2017. "Economic and environmental impacts of agricultural and rural development projects in Japan: evidence from an interregional input–output analysis," Asia-Pacific Journal of Regional Science, Springer, vol. 1(2), pages 399-426, October.
  • Handle: RePEc:spr:apjors:v:1:y:2017:i:2:d:10.1007_s41685-017-0044-2
    DOI: 10.1007/s41685-017-0044-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41685-017-0044-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41685-017-0044-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nässén, Jonas & Holmberg, John & Wadeskog, Anders & Nyman, Madeleine, 2007. "Direct and indirect energy use and carbon emissions in the production phase of buildings: An input–output analysis," Energy, Elsevier, vol. 32(9), pages 1593-1602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Liu & Chan Lu & Chun Yi, 2023. "Research on Green and Low-Carbon Rural Development in China: A Scientometric Analysis Using CiteSpace (1979–2021)," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    2. Canh Thi Nguyen, 2019. "Using Solow and I–O models to determine the factors impacting economic growth in Ho Chi Minh City, Vietnam," Asia-Pacific Journal of Regional Science, Springer, vol. 3(1), pages 247-271, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ke & Yang, Kexin & Wei, Yi-Ming & Zhang, Chi, 2018. "Shadow prices of direct and overall carbon emissions in China’s construction industry: A parametric directional distance function-based sensitive estimation," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 180-193.
    2. Lin, Boqiang & Du, Zhili, 2017. "Promoting energy conservation in China's metallurgy industry," Energy Policy, Elsevier, vol. 104(C), pages 285-294.
    3. Dixit, Manish K. & Culp, Charles H. & Fernández-Solís, Jose L., 2013. "System boundary for embodied energy in buildings: A conceptual model for definition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 153-164.
    4. Qiang Du & Xinran Lu & Yi Li & Min Wu & Libiao Bai & Ming Yu, 2018. "Carbon Emissions in China’s Construction Industry: Calculations, Factors and Regions," IJERPH, MDPI, vol. 15(6), pages 1-17, June.
    5. Enrico Sicignano & Giacomo Di Ruocco & Roberta Melella, 2019. "Mitigation Strategies for Reduction of Embodied Energy and Carbon, in the Construction Systems of Contemporary Quality Architecture," Sustainability, MDPI, vol. 11(14), pages 1-14, July.
    6. Liu, Hongtao & Polenske, Karen R. & Guilhoto, Joaquim José Martins & Xi, Youmin, 2011. "Direct and indirect energy consumption in China and the United States," MPRA Paper 35830, University Library of Munich, Germany.
    7. Rai, Deepak & Sodagar, Behzad & Fieldson, Rosi & Hu, Xiao, 2011. "Assessment of CO2 emissions reduction in a distribution warehouse," Energy, Elsevier, vol. 36(4), pages 2271-2277.
    8. Ignacio Zabalza & Sabina Scarpellini & Alfonso Aranda & Eva Llera & Alberto Jáñez, 2013. "Use of LCA as a Tool for Building Ecodesign. A Case Study of a Low Energy Building in Spain," Energies, MDPI, vol. 6(8), pages 1-21, August.
    9. Maximilian Weigert & Oleksandr Melnyk & Leopold Winkler & Jacqueline Raab, 2022. "Carbon Emissions of Construction Processes on Urban Construction Sites," Sustainability, MDPI, vol. 14(19), pages 1-14, October.
    10. Xiaodong Hu & Ximing Zhang & Lei Dong & Hujun Li & Zheng He & Huihua Chen, 2022. "Carbon Emission Factors Identification and Measurement Model Construction for Railway Construction Projects," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    11. Arora, Sanjay K. & Foley, Rider W. & Youtie, Jan & Shapira, Philip & Wiek, Arnim, 2014. "Drivers of technology adoption — the case of nanomaterials in building construction," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 232-244.
    12. Duan, Haiyan & Chen, Siyan & Song, Junnian, 2022. "Characterizing regional building energy consumption under joint climatic and socioeconomic impacts," Energy, Elsevier, vol. 245(C).
    13. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    14. Liang, Sai & Zhang, Tianzhu & Wang, Yafei & Jia, Xiaoping, 2012. "Sustainable urban materials management for air pollutants mitigation based on urban physical input–output model," Energy, Elsevier, vol. 42(1), pages 387-392.
    15. Rui Zhang & Panxuan Tang & Tian Lan & Zhaojing Liu & Shiguang Ling, 2022. "Resilient and Sustainability Analysis of Flexible Supporting Structure of Expansive Soil Slope," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    16. Fu, Z.H. & Xie, Y.L. & Li, W. & Lu, W.T. & Guo, H.C., 2017. "An inexact multi-objective programming model for an economy-energy-environment system under uncertainty: A case study of Urumqi, China," Energy, Elsevier, vol. 126(C), pages 165-178.
    17. Oliveira, Carla & Antunes, Carlos Henggeler, 2011. "A multi-objective multi-sectoral economy–energy–environment model: Application to Portugal," Energy, Elsevier, vol. 36(5), pages 2856-2866.
    18. Qingwei Shi & Jingxin Gao & Xia Wang & Hong Ren & Weiguang Cai & Haifeng Wei, 2020. "Temporal and Spatial Variability of Carbon Emission Intensity of Urban Residential Buildings: Testing the Effect of Economics and Geographic Location in China," Sustainability, MDPI, vol. 12(7), pages 1-23, March.
    19. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    20. Malmqvist, Tove & Glaumann, Mauritz & Scarpellini, Sabina & Zabalza, Ignacio & Aranda, Alfonso & Llera, Eva & Díaz, Sergio, 2011. "Life cycle assessment in buildings: The ENSLIC simplified method and guidelines," Energy, Elsevier, vol. 36(4), pages 1900-1907.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:apjors:v:1:y:2017:i:2:d:10.1007_s41685-017-0044-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.