IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v3y2016i4d10.1007_s40745-016-0091-y.html
   My bibliography  Save this article

A Systematic Review on Minwise Hashing Algorithms

Author

Listed:
  • Jingjing Tang

    (University of Chinese Academy of Sciences)

  • Yingjie Tian

    (Chinese Academy of Sciences)

Abstract

Similarity detection technology captures a host of researchers’ attention. Minwise hashing schemes become the current researching hot spots in machine learning for similarity preservation. During the data preprocessing stage, the basic idea of minwise hashing schemes is to transfer the original data into binary codes which are good proxies of original data to preserve the similarity. Minwise hashing schemes can improve the computation efficiency and save the storage space without notable loss of accuracy. Thus, they have been studied extensively and developed rapidly for decades. Considering minwise hashing algorithm and its variants, a systematic survey is needed and beneficial to understand and utilize this kind of data preprocessing techniques more easily. The purpose of this paper is to review minwise hashing algorithms in detail and provide an insightful understanding of current developments. In order to show the application prospect of the minwise hashing algorithms, various algorithms have combined with linear Support Vector Machine for large-scale classification. Both theoretical analysis and experimental results demonstrate that these algorithms can achieve massive advantages in accuracy, efficiency and energy-consumption. Furthermore, their limitations, major opportunities and challenges, extensions and variants as well as potential important research directions have been pointed out.

Suggested Citation

  • Jingjing Tang & Yingjie Tian, 2016. "A Systematic Review on Minwise Hashing Algorithms," Annals of Data Science, Springer, vol. 3(4), pages 445-468, December.
  • Handle: RePEc:spr:aodasc:v:3:y:2016:i:4:d:10.1007_s40745-016-0091-y
    DOI: 10.1007/s40745-016-0091-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-016-0091-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-016-0091-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:3:y:2016:i:4:d:10.1007_s40745-016-0091-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.