Author
Listed:
- Hari Krishna Kalidindi
(Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation)
- N. Srinivasu
(Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation
Department of CSE, S.R.K.R Engineering College)
Abstract
Modernization in the healthcare industry is happening with the support of artificial intelligence and blockchain technologies. Collecting healthcare data is done through any Google survey from different governing bodies and data available on the Web of Sciences. However, the researchers continually suffered on developing effective classification approaches. In the recently developed models, deep learning is used for better generalization and training performance using a massive amount of data. A better learning model is built by sharing the data from organizations like research centers, testing labs, hospitals, etc. Each healthcare institution requires proper data privacy, and thus, these industries desire to use efficient and accurate learning systems for different applications. Among various diseases in the world, lung cancer is one of a hazardous diseases. Thus, early identification of lung cancer and followed by the appropriate treatment can save a life. Hence, the Computer Aided Diagnosis (CAD) model is essential for supporting healthcare applications. Therefore, an automated lung cancer detection models are developed to identify cancer from the different modalities of medical images. As a result, the privacy concern in clinical data restricts data sharing between various organizations based on legal and ethical problems. Hence, for these security reasons, the blockchain comes into focus. Here, there is a need to get access to the blockchain by healthcare professionals for displaying the clinical records of the patient, which ensures the security of the patient’s data. For this purpose, artificial intelligence utilizes numerous techniques, large quantities of data, and decision-making capability. Thus, the medical system must have democratized healthcare, reduced costs, and enhanced service efficiency by combining technological advancement. Therefore, this paper aims to review several lung cancer detection approaches in data sharing to help future research. Here, the systematic review of lung cancer detection models is done based on ML and DL algorithms. In recent years, the fundamental well-performed techniques have been discussed by categorizing them. Furthermore, the simulation platforms, dataset utilized, and performance measures are evaluated as an extended review. This survey explores the challenges and research findings for supporting future works. This work will produce many suggestions for future professionals and researchers for enhancing the secure data transmission of medical data.
Suggested Citation
Hari Krishna Kalidindi & N. Srinivasu, 2025.
"A Comprehensive Study and Research Perception towards Secured Data Sharing for Lung Cancer Detection with Blockchain Technology,"
Annals of Data Science, Springer, vol. 12(2), pages 757-797, April.
Handle:
RePEc:spr:aodasc:v:12:y:2025:i:2:d:10.1007_s40745-024-00537-0
DOI: 10.1007/s40745-024-00537-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:12:y:2025:i:2:d:10.1007_s40745-024-00537-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.