IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v12y2025i1d10.1007_s40745-024-00557-w.html
   My bibliography  Save this article

A Review of Anonymization Algorithms and Methods in Big Data

Author

Listed:
  • Elham Shamsinejad

    (Islamic Azad University)

  • Touraj Banirostam

    (Islamic Azad University)

  • Mir Mohsen Pedram

    (Kharazmi University)

  • Amir Masoud Rahmani

    (Islamic Azad University)

Abstract

In the era of big data, with the increase in volume and complexity of data, the main challenge is how to use big data while preserving the privacy of users. This study was conducted with the aim of finding a solution to this challenge. In this study, we examined various data anonymization methods, including differential privacy, advanced encryption, and strong access controls. In addition, the operation, advantages, disadvantages, and use of these methods, the challenges of adapting these methods to big data, and possible solutions for them were also examined. Our results show that traditional data anonymization methods lack scalability, leading to privacy breaches and data loss. When faced with large volumes of data, these methods may not be able to fully process the data. Also, these methods may be ineffective against re-identification attacks, linkage attacks, and inference attacks. We introduced emerging methods that are capable of providing improved privacy with minimal data loss. These methods have scalability for big data. Finally, we examined future research works and raised important questions that can help improve existing algorithms or develop new methods, better manage the complexity and scale of unstructured data.

Suggested Citation

  • Elham Shamsinejad & Touraj Banirostam & Mir Mohsen Pedram & Amir Masoud Rahmani, 2025. "A Review of Anonymization Algorithms and Methods in Big Data," Annals of Data Science, Springer, vol. 12(1), pages 253-279, February.
  • Handle: RePEc:spr:aodasc:v:12:y:2025:i:1:d:10.1007_s40745-024-00557-w
    DOI: 10.1007/s40745-024-00557-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-024-00557-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-024-00557-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:12:y:2025:i:1:d:10.1007_s40745-024-00557-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.