IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v12y2025i1d10.1007_s40745-024-00552-1.html
   My bibliography  Save this article

Partial Label Learning with Noisy Labels

Author

Listed:
  • Pan Zhao

    (Nanjing University of Information Science & Technology)

  • Long Tang

    (Nanjing University of Information Science & Technology
    Nanjing University of Information Science & Technology)

  • Zhigeng Pan

    (Nanjing University of Information Science & Technology)

Abstract

Partial label learning (PLL) is a particular problem setting within weakly supervised learning. In PLL, each sample corresponds to a candidate label set in which only one label is true. However, in some practical application scenarios, the emergence of label noise can make some candidate sets lose their true labels, leading to a decline in model performance. In this work, a robust training strategy for PLL, derived from the joint training with co-regularization (JoCoR), is proposed to address this issue in PLL. Specifically, the proposed approach constructs two separate PLL models and a joint loss. The joint loss consists of not only two PLL losses but also a co-regularization term measuring the disagreement of the two models. By automatically selecting samples with small joint loss and using them to update the two models, our proposed approach is able to filter more and more suspected samples with noise candidate label sets. Gradually, the robustness of the PLL models to label noise strengthens due to the reduced disagreement of the two models. Experiments are conducted on two state-of-the-art PLL models using benchmark datasets under various noise levels. The results show that the proposed method can effectively stabilize the training process and reduce the model's overfitting to noisy candidate label sets.

Suggested Citation

  • Pan Zhao & Long Tang & Zhigeng Pan, 2025. "Partial Label Learning with Noisy Labels," Annals of Data Science, Springer, vol. 12(1), pages 199-212, February.
  • Handle: RePEc:spr:aodasc:v:12:y:2025:i:1:d:10.1007_s40745-024-00552-1
    DOI: 10.1007/s40745-024-00552-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-024-00552-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-024-00552-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:12:y:2025:i:1:d:10.1007_s40745-024-00552-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.