IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v11y2024i2d10.1007_s40745-023-00490-4.html
   My bibliography  Save this article

Improving Bayesian Classifier Using Vine Copula and Fuzzy Clustering Technique

Author

Listed:
  • Ha Che-Ngoc

    (Ton Duc Thang University)

  • Thao Nguyen-Trang

    (Van Lang University
    Van Lang University)

  • Hieu Huynh-Van

    (Ho Chi Minh City University of Technology (HCMUT)
    Vietnam National University Ho Chi Minh City
    Industrial University of Ho Chi Minh City)

  • Tai Vo-Van

    (Can Tho University)

Abstract

Classification is a fundamental problem in statistics and data science, and it has garnered significant interest from researchers. This research proposes a new classification algorithm that builds upon two key improvements of the Bayesian method. First, we introduce a method to determine the prior probabilities using fuzzy clustering techniques. The prior probability is determined based on the fuzzy level of the classified element within the groups. Second, we develop the probability density function using Vine Copula. By combining these improvements, we obtain an automatic classification algorithm with several advantages. The proposed algorithm is presented with specific steps and illustrated using numerical examples. Furthermore, it is applied to classify image data, demonstrating its significant potential in various real-world applications. The numerical examples and applications highlight that the proposed algorithm outperforms existing methods, including traditional statistics and machine learning approaches.

Suggested Citation

  • Ha Che-Ngoc & Thao Nguyen-Trang & Hieu Huynh-Van & Tai Vo-Van, 2024. "Improving Bayesian Classifier Using Vine Copula and Fuzzy Clustering Technique," Annals of Data Science, Springer, vol. 11(2), pages 709-732, April.
  • Handle: RePEc:spr:aodasc:v:11:y:2024:i:2:d:10.1007_s40745-023-00490-4
    DOI: 10.1007/s40745-023-00490-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-023-00490-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-023-00490-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:11:y:2024:i:2:d:10.1007_s40745-023-00490-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.