IDEAS home Printed from https://ideas.repec.org/a/spr/anresc/v72y2024i3d10.1007_s00168-023-01220-7.html
   My bibliography  Save this article

Spatiotemporal localisation patterns of technological startups: the case for recurrent neural networks in predicting urban startup clusters

Author

Listed:
  • Maria Kubara

    (University of Warsaw)

Abstract

More attention should be dedicated to intra-urban localisation decisions of technological startups. While the general trend of innovative companies being attracted to metropolitan areas is well-known and thoroughly researched, much less is understood about the micro-geographical patterns emerging within cities. Considering the growing number of papers mentioning that agglomeration externalities attenuate sharply with distance, such an analysis of micro-scale localisation patterns is crucial for understanding whether these effects are of importance for technological startups. Using a sample of startups from the up-and-coming market in Central-East Europe in Warsaw, Poland, their spatial organisation across the years will be tracked to investigate whether there is a defined pattern consistent with highly localised externalities operating within cities and how this pattern evolves over time. Additionally, the paper will show how recurrent neural networks may help predict the locations of technological startup clusters. It will be presented how to include the spatial dimension in the model in a computationally effective way and how this augmentation improves the results by allowing the network to “understand” the spatial relations between neighbouring observations.

Suggested Citation

  • Maria Kubara, 2024. "Spatiotemporal localisation patterns of technological startups: the case for recurrent neural networks in predicting urban startup clusters," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 72(3), pages 797-829, March.
  • Handle: RePEc:spr:anresc:v:72:y:2024:i:3:d:10.1007_s00168-023-01220-7
    DOI: 10.1007/s00168-023-01220-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00168-023-01220-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00168-023-01220-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • R12 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Size and Spatial Distributions of Regional Economic Activity; Interregional Trade (economic geography)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:anresc:v:72:y:2024:i:3:d:10.1007_s00168-023-01220-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.