IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v99y2000i1p227-25010.1023-a1019223800849.html
   My bibliography  Save this article

An Asset Liability Management Model for Casualty Insurers: Complexity Reduction vs. Parameterized Decision Rules

Author

Listed:
  • Alexei Gaivoronski
  • Petter de Lange

Abstract

In this paper we study possibilities for complexity reductions in large scale stochastic programming problems with specific reference to the asset liability management (ALM) problem for casualty insurers. We describe a dynamic, stochastic portfolio selection model, within which the casualty insurer maximizes a concave objective function, indicating that the company perceives itself as risk averse. In this context we examine the sensitivity of the solution to the quality and accuracy with which economic uncertainties are represented in the model. We demonstrate a solution method that combines two solution approaches: A truly stochastic, dynamic solution method that requires scenario aggregation, and a solution method based on ex ante decision rules, that allow for a greater number of scenarios. This dynamic/fix mix decision policy, which facilitates a huge number of outcomes, is then compared to a fully dynamic decision policy, requiring fewer outcomes. We present results from solving the model. Basically we find that the insurance company is likely to prefer accurate representation of uncertainties. In order to accomplish this, it will accept to calculate its current portfolio using parameterized decision rules. Copyright Kluwer Academic Publishers 2000

Suggested Citation

  • Alexei Gaivoronski & Petter de Lange, 2000. "An Asset Liability Management Model for Casualty Insurers: Complexity Reduction vs. Parameterized Decision Rules," Annals of Operations Research, Springer, vol. 99(1), pages 227-250, December.
  • Handle: RePEc:spr:annopr:v:99:y:2000:i:1:p:227-250:10.1023/a:1019223800849
    DOI: 10.1023/A:1019223800849
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1019223800849
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1019223800849?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sodhi, ManMohan S. & Tang, Christopher S., 2009. "Modeling supply-chain planning under demand uncertainty using stochastic programming: A survey motivated by asset-liability management," International Journal of Production Economics, Elsevier, vol. 121(2), pages 728-738, October.
    2. Gaivoronski, Alexei & Sechi, Giovanni M. & Zuddas, Paola, 2012. "Cost/risk balanced management of scarce resources using stochastic programming," European Journal of Operational Research, Elsevier, vol. 216(1), pages 214-224.
    3. Gaivoronski, Alexei A. & Krylov, Sergiy & van der Wijst, Nico, 2005. "Optimal portfolio selection and dynamic benchmark tracking," European Journal of Operational Research, Elsevier, vol. 163(1), pages 115-131, May.
    4. Jules Raymond Kala & Didier Michael Kre & Armelle N’Guessan Gnassou & Jean Robert Kamdjoug Kala & Yves Melaine Akpablin Akpablin & Tiorna Coulibaly, 2022. "Assets management on electrical grid using Faster-RCNN," Annals of Operations Research, Springer, vol. 308(1), pages 307-320, January.
    5. Gaivoronski, Alexei A. & Stella, Fabio, 2003. "On-line portfolio selection using stochastic programming," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1013-1043, April.
    6. Dupacova, Jitka, 2002. "Applications of stochastic programming: Achievements and questions," European Journal of Operational Research, Elsevier, vol. 140(2), pages 281-290, July.
    7. ManMohan S. Sodhi, 2005. "LP Modeling for Asset-Liability Management: A Survey of Choices and Simplifications," Operations Research, INFORMS, vol. 53(2), pages 181-196, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:99:y:2000:i:1:p:227-250:10.1023/a:1019223800849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.