IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v346y2025i2d10.1007_s10479-022-04951-6.html
   My bibliography  Save this article

Sensitivity to uncertainty and scalarization in robust multiobjective optimization: an overview with application to mean-variance portfolio optimization

Author

Listed:
  • Matteo Rocca

    (Universitá degli Studi dell’Insubria)

Abstract

Robust optimization is proving to be a fruitful tool to study problems with uncertain data. In this paper we deal with the minmax aproach to robust multiobjective optimization. We survey the main features of this problem with particular reference to results concerning linear scalarization and sensitivity of optimal values with respect to changes in the uncertainty set. Furthermore we prove results concerning sensitivity of optimal solutions with respect to changes in the uncertainty set. Finally we apply the presented results to mean-variance portfolio optimization.

Suggested Citation

  • Matteo Rocca, 2025. "Sensitivity to uncertainty and scalarization in robust multiobjective optimization: an overview with application to mean-variance portfolio optimization," Annals of Operations Research, Springer, vol. 346(2), pages 1671-1686, March.
  • Handle: RePEc:spr:annopr:v:346:y:2025:i:2:d:10.1007_s10479-022-04951-6
    DOI: 10.1007/s10479-022-04951-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04951-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04951-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:346:y:2025:i:2:d:10.1007_s10479-022-04951-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.