IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v346y2025i1d10.1007_s10479-024-06332-7.html
   My bibliography  Save this article

Optimal asset allocation and nonlinear return predictability from the dividend-price ratio

Author

Listed:
  • Fabrizio Ghezzi

    (UCSD)

  • Anindo Sarkar

    (UCSD)

  • Thomas Quistgaard Pedersen

    (Aarhus University)

  • Allan Timmermann

    (UCSD
    UCSD)

Abstract

We study non-linear predictability of stock returns arising from the dividend-price ratio and its implications for asset allocation decisions. Using data from five countries — U.S., U.K., France, Germany and Japan — we find empirical evidence supporting non-linear and time-varying models for the equity risk premium. Building on this, we examine several model specifications that can account for non-linear return predictability, including Markov switching models, regression trees, random forests and neural networks. Although in-sample return regressions and portfolio allocation results support the use of non-linear predictability models, the out-of-sample evidence is notably weaker, highlighting the difficulty in exploiting non-linear predictability in real time.

Suggested Citation

  • Fabrizio Ghezzi & Anindo Sarkar & Thomas Quistgaard Pedersen & Allan Timmermann, 2025. "Optimal asset allocation and nonlinear return predictability from the dividend-price ratio," Annals of Operations Research, Springer, vol. 346(1), pages 415-445, March.
  • Handle: RePEc:spr:annopr:v:346:y:2025:i:1:d:10.1007_s10479-024-06332-7
    DOI: 10.1007/s10479-024-06332-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-06332-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-06332-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:346:y:2025:i:1:d:10.1007_s10479-024-06332-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.