IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v341y2024i1d10.1007_s10479-023-05638-2.html
   My bibliography  Save this article

Public R &D project portfolio selection under expenditure uncertainty

Author

Listed:
  • Musa Çağlar

    (Tulane University)

  • Sinan Gürel

    (Middle East Technical University)

Abstract

We consider a project portfolio selection problem faced by research councils in project and call-based R &D grant programs. In such programs, typically, each applicant project receives a score value during specially-designed peer review processes. Each project also has a certain budget, estimated by its principle investigator. The problem is to select an optimal (maximum total score) subset of applicant projects under a budget constraint for the call. At the time of funding decisions, exact expenditures of projects are not known. The research councils typically don’t provide more money than they funded a project to start with, so the realized total expenditure of a portfolio usually tends to be lower than the total budget, which causes budgetary slack. In this paper, we attempt to model this phenomenon in a project portfolio selection problem and show that budget utilization of a call can be increased to support more projects and hence achieve higher scientific impact. We model a project’s expenditure using a mixture distribution that represents project success, underspending and cancellation situations. We develop a chance-constrained model with policy constraints. Due to the intractability of the developed model, we have shown that Normal distribution can be used for approximation. We also quantify the approximation error of our model via a theoretical bound and simulation. The proposed approach could rigorously increase the budget utilization up to 15.2% along with a prominent rise in expected number of successfully completed projects, which are remarkable metrics for public decision makers.

Suggested Citation

  • Musa Çağlar & Sinan Gürel, 2024. "Public R &D project portfolio selection under expenditure uncertainty," Annals of Operations Research, Springer, vol. 341(1), pages 375-399, October.
  • Handle: RePEc:spr:annopr:v:341:y:2024:i:1:d:10.1007_s10479-023-05638-2
    DOI: 10.1007/s10479-023-05638-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05638-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05638-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabriel, Steven A. & Kumar, Satheesh & Ordonez, Javier & Nasserian, Amirali, 2006. "A multiobjective optimization model for project selection with probabilistic considerations," Socio-Economic Planning Sciences, Elsevier, vol. 40(4), pages 297-313, December.
    2. Rick Antle & Gary D. Eppen, 1985. "Capital Rationing and Organizational Slack in Capital Budgeting," Management Science, INFORMS, vol. 31(2), pages 163-174, February.
    3. B. K. Pagnoncelli & S. Ahmed & A. Shapiro, 2009. "Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 399-416, August.
    4. Nemirovski, Arkadi, 2012. "On safe tractable approximations of chance constraints," European Journal of Operational Research, Elsevier, vol. 219(3), pages 707-718.
    5. Hong, Yili, 2013. "On computing the distribution function for the Poisson binomial distribution," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 41-51.
    6. Medaglia, Andres L. & Graves, Samuel B. & Ringuest, Jeffrey L., 2007. "A multiobjective evolutionary approach for linearly constrained project selection under uncertainty," European Journal of Operational Research, Elsevier, vol. 179(3), pages 869-894, June.
    7. Liesiö, Juuso & Salo, Ahti & Keisler, Jeffrey M. & Morton, Alec, 2021. "Portfolio decision analysis: Recent developments and future prospects," European Journal of Operational Research, Elsevier, vol. 293(3), pages 811-825.
    8. Nicholas G. Hall & Daniel Zhuoyu Long & Jin Qi & Melvyn Sim, 2015. "Managing Underperformance Risk in Project Portfolio Selection," Operations Research, INFORMS, vol. 63(3), pages 660-675, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Panadero & Jana Doering & Renatas Kizys & Angel A. Juan & Angels Fito, 2020. "A variable neighborhood search simheuristic for project portfolio selection under uncertainty," Journal of Heuristics, Springer, vol. 26(3), pages 353-375, June.
    2. van der Laan, Niels & Teunter, Ruud H. & Romeijnders, Ward & Kilic, Onur A., 2022. "The data-driven newsvendor problem: Achieving on-target service-levels using distributionally robust chance-constrained optimization," International Journal of Production Economics, Elsevier, vol. 249(C).
    3. L. Jeff Hong & Zhaolin Hu & Liwei Zhang, 2014. "Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 385-400, May.
    4. Vincent Tsz Fai Chow & Zheng Cui & Daniel Zhuoyu Long, 2022. "Target-Oriented Distributionally Robust Optimization and Its Applications to Surgery Allocation," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2058-2072, July.
    5. Shanshan Wang & Jinlin Li & Sanjay Mehrotra, 2021. "Chance-Constrained Multiple Bin Packing Problem with an Application to Operating Room Planning," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1661-1677, October.
    6. Fallahi, F. & Bakir, I. & Yildirim, M. & Ye, Z., 2022. "A chance-constrained optimization framework for wind farms to manage fleet-level availability in condition based maintenance and operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Farhad Hassanzadeh & Hamid Nemati & Minghe Sun, 2013. "Robust Optimization for Interactive Multiobjective Programming with Imprecise Information Applied to R&D Project Portfolio Selection," Working Papers 0194mss, College of Business, University of Texas at San Antonio.
    8. Hassanzadeh, Farhad & Nemati, Hamid & Sun, Minghe, 2014. "Robust optimization for interactive multiobjective programming with imprecise information applied to R&D project portfolio selection," European Journal of Operational Research, Elsevier, vol. 238(1), pages 41-53.
    9. Diglio, Antonio & Peiró, Juanjo & Piccolo, Carmela & Saldanha-da-Gama, Francisco, 2023. "Approximation schemes for districting problems with probabilistic constraints," European Journal of Operational Research, Elsevier, vol. 307(1), pages 233-248.
    10. Peng, Shen & Maggioni, Francesca & Lisser, Abdel, 2022. "Bounds for probabilistic programming with application to a blend planning problem," European Journal of Operational Research, Elsevier, vol. 297(3), pages 964-976.
    11. Aigner, Kevin-Martin & Clarner, Jan-Patrick & Liers, Frauke & Martin, Alexander, 2022. "Robust approximation of chance constrained DC optimal power flow under decision-dependent uncertainty," European Journal of Operational Research, Elsevier, vol. 301(1), pages 318-333.
    12. Magni, Carlo Alberto, 2009. "Splitting up value: A critical review of residual income theories," European Journal of Operational Research, Elsevier, vol. 198(1), pages 1-22, October.
    13. Anil Arya & Ram N. V. Ramanan, 2023. "Endogenizing Discretion in Disclosures," Management Science, INFORMS, vol. 69(6), pages 3730-3747, June.
    14. Jeremy C. Stein, 2002. "Information Production and Capital Allocation: Decentralized versus Hierarchical Firms," Journal of Finance, American Finance Association, vol. 57(5), pages 1891-1921, October.
    15. Jingwen Qi & Hans Wang & Jianfeng Zheng, 2022. "Shore Power Deployment Problem—A Case Study of a Chinese Container Shipping Network," Sustainability, MDPI, vol. 14(11), pages 1-13, June.
    16. Ronald A. Dye & Sri S. Sridhar, 2003. "Investment Implications of Information Acquisition and Leakage," Management Science, INFORMS, vol. 49(6), pages 767-783, June.
    17. Arun G. Chandrasekhar & Robert Townsend & Juan Pablo Xandri, 2018. "Financial Centrality and Liquidity Provision," NBER Working Papers 24406, National Bureau of Economic Research, Inc.
    18. Sunil Dutta & Stefan Reichelstein, 2000. "Controlling Investment Decisions: Hurdle Rates and Intertemporal Cost Allocation," CESifo Working Paper Series 354, CESifo.
    19. Deligiannis, Michalis & Liberopoulos, George, 2023. "Dynamic ordering and buyer selection policies when service affects future demand," Omega, Elsevier, vol. 118(C).
    20. Markus Brunner & Andreas Ostermaier, 2019. "Peer Influence on Managerial Honesty: The Role of Transparency and Expectations," Journal of Business Ethics, Springer, vol. 154(1), pages 127-145, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:341:y:2024:i:1:d:10.1007_s10479-023-05638-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.