IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v335y2024i1d10.1007_s10479-023-05725-4.html
   My bibliography  Save this article

A data-driven optimization approach to baseball roster management

Author

Listed:
  • Sean Barnes

    (Netflix)

  • Margrét Bjarnadóttir

    (University of Maryland College Park)

  • Daniel Smolyak

    (University of Maryland College Park)

  • Aurélie Thiele

    (Southern Methodist University)

Abstract

Each year, major league baseball (MLB) teams face complex decisions about which players to retain and which players to recruit. In addition to operational, team and budget constraints, these decisions are further complicated by the fact that an athlete’s future performance and its impact on the team are both uncertain. In this paper, we combine prediction modeling with decision optimization to study the MLB free agent market. We develop optimization models for the allocation of a team’s recruitment budget using six different metrics that evaluate a player’s contributions to a team’s success. We consider both an ideal case, where each team can choose among all free agents, and a sequential case, where we assume that teams with stronger appeal (big market) are more successful in attracting talent, while teams with less pull must optimize their rosters over a much smaller pool of remaining players. Using the best-performing metric, which takes into account both players’ positions and their positional flexibility, we develop a series of quantitative tools that help teams, especially those with small budgets, identify (1) the players who deliver a key competitive advantage to their teams, appearing in both their ideal and sequential rosters and (2) the players who are in many ideal rosters and thus are likely to be hired by teams with big budgets, perhaps at a substantial salary premium. In order to gain and maintain an edge in the fiercely competitive free agent market, teams need to continuously adapt their strategies, and our models represent a first step towards prescriptive (not just predictive) analytics designed to help them do so. Further, our analysis indicates that a few players are in high demand from many teams (for instance, in every year of the period considered, the ten most in-demand players appear in the ideal rosters of at least seven teams), while most players appear in one ideal roster or none at all. Our models go beyond players’ individual performance metrics to help teams understand which players will be in high demand due to teams’ position needs in a given year. The results further emphasize the increasing importance of contract extensions as a strategy to bypass the free agent market.

Suggested Citation

  • Sean Barnes & Margrét Bjarnadóttir & Daniel Smolyak & Aurélie Thiele, 2024. "A data-driven optimization approach to baseball roster management," Annals of Operations Research, Springer, vol. 335(1), pages 33-58, April.
  • Handle: RePEc:spr:annopr:v:335:y:2024:i:1:d:10.1007_s10479-023-05725-4
    DOI: 10.1007/s10479-023-05725-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05725-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05725-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:335:y:2024:i:1:d:10.1007_s10479-023-05725-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.