IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v335y2024i1d10.1007_s10479-023-05507-y.html
   My bibliography  Save this article

Efficient portfolios and extreme risks: a Pareto–Dirichlet approach

Author

Listed:
  • Olivier Courtois

    (Emlyon Business School)

  • Xia Xu

    (ESSCA School of Management)

Abstract

This paper solves the mean variance skewness kurtosis (MVSK) portfolio optimization problem by introducing a general Pareto–Dirichlet method. We approximate the feasible portfolio set with a calibrated Dirichlet distribution, where a portfolio is MVSK efficient if its profile in terms of the first four moments is not dominated by any other portfolio. Compared to existing higher order portfolio optimization methods, the Pareto–Dirichlet approach cannot misclassify inefficient portfolios as efficient and produces the efficient set in a very quick way. Coupling the Pareto–Dirichlet approach with a new criterion that generalizes the Sharpe ratio, we are able to produce optimal portfolios in a quick way also. We illustrate our approach with Fama-French 30 Industry Portfolios, where we show that the optimal portfolios derived with our method are preferred to those derived with other optimization schemes by all tested classic performance measures.

Suggested Citation

  • Olivier Courtois & Xia Xu, 2024. "Efficient portfolios and extreme risks: a Pareto–Dirichlet approach," Annals of Operations Research, Springer, vol. 335(1), pages 261-292, April.
  • Handle: RePEc:spr:annopr:v:335:y:2024:i:1:d:10.1007_s10479-023-05507-y
    DOI: 10.1007/s10479-023-05507-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05507-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05507-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:335:y:2024:i:1:d:10.1007_s10479-023-05507-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.