IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v333y2024i2d10.1007_s10479-022-04776-3.html
   My bibliography  Save this article

Data-driven strategies in operation management: mining user-generated content in Twitter

Author

Listed:
  • Jose Ramon Saura

    (Rey Juan Carlos University)

  • Domingo Ribeiro-Soriano

    (Universitat de Valencia)

  • Daniel Palacios-Marqués

    (Universitat Politècnica de València)

Abstract

In recent years, the business ecosystem has focused on understanding new ways of automating, collecting, and analyzing data in order to improve products and business models. These actions allow operations management to improve prediction, value creation, optimization, and automatization. In this study, we develop a novel methodology based on data-mining techniques and apply it to identify insights regarding the characteristics of new business models in operations management. The data analyzed in the present study are user-generated content from Twitter. The results are validated using the methods based on Computer-Aided Text Analysis. Specifically, a sentimental analysis with TextBlob on which experiments are performed using vector classifier, multinomial naïve Bayes, logistic regression, and random forest classifier is used. Then, a Latent Dirichlet Allocation is applied to separate the sample into topics based on sentiments to calculate keyness and p-value. Finally, these results are analyzed with a textual analysis developed in Python. Based on the results, we identify 8 topics, of which 5 are positive (Automation, Data, Forecasting, Mobile accessibility and Employee experiences), 1 topic is negative (Intelligence Security), and 2 topics are neutral (Operational CRM, Digital teams). The paper concludes with a discussion of the main characteristics of the business models in the OM sector that use DDI. In addition, we formulate 26 research questions to be explored in future studies.

Suggested Citation

  • Jose Ramon Saura & Domingo Ribeiro-Soriano & Daniel Palacios-Marqués, 2024. "Data-driven strategies in operation management: mining user-generated content in Twitter," Annals of Operations Research, Springer, vol. 333(2), pages 849-869, February.
  • Handle: RePEc:spr:annopr:v:333:y:2024:i:2:d:10.1007_s10479-022-04776-3
    DOI: 10.1007/s10479-022-04776-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04776-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04776-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:333:y:2024:i:2:d:10.1007_s10479-022-04776-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.