IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v333y2024i2d10.1007_s10479-021-04049-5.html
   My bibliography  Save this article

Conversational commerce: entering the next stage of AI-powered digital assistants

Author

Listed:
  • Janarthanan Balakrishnan

    (National Institute of Technology)

  • Yogesh K. Dwivedi

    (Swansea University Bay Campus)

Abstract

Digital assistant is a recent advancement benefited through data-driven innovation. Though digital assistants have become an integral member of user conversations, but there is no theory that relates user perception towards this AI powered technology. The purpose of the research is to investigate the role of technology attitude and AI attributes in enhancing purchase intention through digital assistants. A conceptual model is proposed after identifying three major AI factors namely, perceived anthropomorphism, perceived intelligence, and perceived animacy. To test the model, the study employed structural equation modeling using 440 sample. The results indicated that perceived anthropomorphism plays the most significant role in building a positive attitude and purchase intention through digital assistants. Though the study is built using technology-related variables, the hypotheses are proposed based on various psychology-related theories such as uncanny valley theory, the theory of mind, developmental psychology, and cognitive psychology theory. The study’s theoretical contributions are discussed within the scope of these theories. Besides the theoretical contribution, the study also offers illuminating practical implications for developers and marketers’ benefit.

Suggested Citation

  • Janarthanan Balakrishnan & Yogesh K. Dwivedi, 2024. "Conversational commerce: entering the next stage of AI-powered digital assistants," Annals of Operations Research, Springer, vol. 333(2), pages 653-687, February.
  • Handle: RePEc:spr:annopr:v:333:y:2024:i:2:d:10.1007_s10479-021-04049-5
    DOI: 10.1007/s10479-021-04049-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04049-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04049-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:333:y:2024:i:2:d:10.1007_s10479-021-04049-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.