IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v332y2024i1d10.1007_s10479-023-05428-w.html
   My bibliography  Save this article

Using stochastic frontier analysis instead of data envelopment analysis in modelling investment performance

Author

Listed:
  • John D. Lamb

    (University of Aberdeen)

  • Kai-Hong Tee

    (Loughborough University)

Abstract

We introduce methods to apply stochastic frontier analysis (SFA) to financial assets as an alternative to data envelopment analysis, because SFA allows us to fit a frontier with noisy data. In contrast to conventional SFA, we wish to deal with estimation risk, heteroscedasticity in noise and inefficiency terms. We investigate measurement error in the risk and return measures using a simulation–extrapolation method and develop residual plots to test model fit. We find that shrinkage estimators for estimation risk makes a striking difference to model fit, dealing with measurement error only improves confidence in the model, and the residual plots are vital for establishing model fit. The methods are important because they allow us to fit a frontier under the assumption that the risks and returns are not known exactly.

Suggested Citation

  • John D. Lamb & Kai-Hong Tee, 2024. "Using stochastic frontier analysis instead of data envelopment analysis in modelling investment performance," Annals of Operations Research, Springer, vol. 332(1), pages 891-907, January.
  • Handle: RePEc:spr:annopr:v:332:y:2024:i:1:d:10.1007_s10479-023-05428-w
    DOI: 10.1007/s10479-023-05428-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05428-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05428-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:332:y:2024:i:1:d:10.1007_s10479-023-05428-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.