IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v332y2024i1d10.1007_s10479-022-05123-2.html
   My bibliography  Save this article

An algorithm to solve multi-objective integer quadratic programming problem

Author

Listed:
  • Prerna Kushwah

    (TIET)

  • Vikas Sharma

    (TIET)

Abstract

The multi-objective integer programming problem often occurs in multi-criteria decision-making situations, where the decision variables are integers. In the present paper, we have discussed an algorithm for finding all efficient solutions of a multi-objective integer quadratic programming problem. The proposed algorithm is based on the aspect that efficient solutions of a multi-objective integer quadratic programming problem can be obtained by enumerating ranked solutions of an integer quadratic programming problem. For determining ranked solutions of an integer quadratic programming problem, we have constructed a related integer linear programming problem and from ranked solutions of this integer linear programming problem, ranked solutions of the original integer quadratic programming problem are generated. Theoretically, we have shown that the developed method generates the set of all efficient solutions in a finite number of steps, and numerically we have elaborated the working of our algorithm and compared our results with existing algorithms. Further, we have analyzed that the developed method is efficient for solving a multi-objective integer quadratic programming problem with a large number of constraints, variables and objectives.

Suggested Citation

  • Prerna Kushwah & Vikas Sharma, 2024. "An algorithm to solve multi-objective integer quadratic programming problem," Annals of Operations Research, Springer, vol. 332(1), pages 433-459, January.
  • Handle: RePEc:spr:annopr:v:332:y:2024:i:1:d:10.1007_s10479-022-05123-2
    DOI: 10.1007/s10479-022-05123-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-05123-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-05123-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:332:y:2024:i:1:d:10.1007_s10479-022-05123-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.