IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v330y2023i1d10.1007_s10479-023-05178-9.html
   My bibliography  Save this article

A risk measurement study evaluating the impact of COVID-19 on China's financial market using the QR-SGED-EGARCH model

Author

Listed:
  • Malin Song

    (Anhui University of Finance and Economics)

  • Zixu Sui

    (Anhui University of Finance and Economics)

  • Xin Zhao

    (Anhui University of Finance and Economics)

Abstract

Due to the significant impact of COVID-19, financial markets in various countries have undergone drastic fluctuations. Accurately measuring risk in the financial market and mastering the changing rules of the stock market are of great importance to macro-control and financial market management of the government. This paper focuses on the return rate of the Shanghai Composite Index. Using the SGED-EGARCH(1,1) model as a foundation, a quantile regression is introduced to establish the QR-SGED-EGARCH(1,1) model. Further, the corresponding value at risk (VaR) is calculated for a crisis and stable period within each model. To better compare the models, the Cornish-Fisher expansion model is included for comparison. According to the Kupiec test, VaR values calculated by the QR-SGED-EGARCH(1,1) model are superior to other models at different confidence levels most of the time. In addition, to account for the VaR method’s inability to effectively measure tail extreme risk, the expected shortfall (ES) method is introduced. The constructed model is used to calculate the corresponding ES values during different periods. According to the evaluation index, the ES values calculated by the QR-SGED-EGARCH(1,1) model have a better effect during a crisis period with the model showing higher accuracy and robustness. It is of great significance for China to better measure financial risk under the impact of a sudden crisis.

Suggested Citation

  • Malin Song & Zixu Sui & Xin Zhao, 2023. "A risk measurement study evaluating the impact of COVID-19 on China's financial market using the QR-SGED-EGARCH model," Annals of Operations Research, Springer, vol. 330(1), pages 787-806, November.
  • Handle: RePEc:spr:annopr:v:330:y:2023:i:1:d:10.1007_s10479-023-05178-9
    DOI: 10.1007/s10479-023-05178-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05178-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05178-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:330:y:2023:i:1:d:10.1007_s10479-023-05178-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.