IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v330y2023i1d10.1007_s10479-021-04114-z.html
   My bibliography  Save this article

Credit risk classification: an integrated predictive accuracy algorithm using artificial and deep neural networks

Author

Listed:
  • Mohammad Mahbobi

    (Thompson Rivers University)

  • Salman Kimiagari

    (Thompson Rivers University)

  • Marriappan Vasudevan

    (Thompson Rivers University)

Abstract

This study utilizes classification models to provide a robust algorithm for imbalanced data where the minority class is of the interest, that is, in the context of default payments. In developing an integrated predictive accuracy algorithm, this study proposes machine learning classifiers and applies DNN, SVM, KNN, and ANN. The proposed algorithm utilizes a 30,000 imbalanced dataset to improve the accuracy of the prediction of default payments by implementing oversampling and undersampling strategies, such as synthetic minority oversampling technique (SMOTE), SVM SMOTE, random undersampling, and ALL-KNN. The results indicate that the SVM under the ALL-KNN sampling technique is able to achieve an accuracy of 98.6%, with the lowest cross entropy loss measurement of 0.028. Through the accurate implementation of the neural networks and neurons used in the proposed algorithm, this paper presents better insights into the functioning of the neural networks when used in conjunction with the resampling techniques. Using the methodology and algorithm presented in this study, credit risk assessments can be more accurately predicted in practical applications where most of the clients are categorized as non-default payments.

Suggested Citation

  • Mohammad Mahbobi & Salman Kimiagari & Marriappan Vasudevan, 2023. "Credit risk classification: an integrated predictive accuracy algorithm using artificial and deep neural networks," Annals of Operations Research, Springer, vol. 330(1), pages 609-637, November.
  • Handle: RePEc:spr:annopr:v:330:y:2023:i:1:d:10.1007_s10479-021-04114-z
    DOI: 10.1007/s10479-021-04114-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04114-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04114-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:330:y:2023:i:1:d:10.1007_s10479-021-04114-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.