IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v330y2023i1d10.1007_s10479-021-03980-x.html
   My bibliography  Save this article

Measures of global sensitivity in linear programming: applications in banking sector

Author

Listed:
  • Mike G. Tsionas

    (Montpellier Business School
    Lancaster University Management School)

  • Dionisis Philippas

    (ESSCA School of Management)

Abstract

The paper examines the sensitivity for the solution of linear programming problems using Bayesian techniques, when samples for the coefficients of the objective function are uncertain. When data is available, we estimate the solution of the linear program and provide statistical measures of uncertainty through the posterior distributions of the solution in the light of the data. When data is not available, these techniques examine the sensitivity of the solution to random variation in the coefficients of the linear problem. The new techniques are based on two posteriors emerging from the inequalities of Karush–Kuhn–Tucker conditions. The first posterior is asymptotic and does not require data. The second posterior is finite-sample-based and is used whenever data is available or if random samples can be drawn from the joint distribution of coefficients. A by-product of our framework is a robust solution. We illustrate the new techniques in two empirical applications to the case of uncertain Data Envelopment Analysis efficiency, involving two large samples, of US commercial banks and a sample of European commercial banks regulated by the Single Supervisory Mechanism. We analyse whether some pre-determined criteria, associated with size and new supervisory framework, can adequately affect the solution of linear program. The results provide evidence of substantial improvements in statistical structure with respect to sensitivities and robustification. Our methodology can serve as a consistency check of the statistical inference for the solution of linear programming problems in efficiency under uncertainty in data.

Suggested Citation

  • Mike G. Tsionas & Dionisis Philippas, 2023. "Measures of global sensitivity in linear programming: applications in banking sector," Annals of Operations Research, Springer, vol. 330(1), pages 585-607, November.
  • Handle: RePEc:spr:annopr:v:330:y:2023:i:1:d:10.1007_s10479-021-03980-x
    DOI: 10.1007/s10479-021-03980-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-03980-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-03980-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Bayesian techniques; Global sensitivity; Data uncertainty; Data envelopment analysis;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:330:y:2023:i:1:d:10.1007_s10479-021-03980-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.