Author
Listed:
- Anthony J. Dunn
(Decision Analysis Services Ltd)
- Stefano Coniglio
(University of Bergamo)
- Mohamed ElRefai
(University Hospital Southampton)
- Paul R. Roberts
(University Hospital Southampton)
- Benedict M. Wiles
(Aberdeen Royal Infirmary
University of Aberdeen)
- Alain B. Zemkoho
(University of Southampton)
Abstract
It is standard cardiology practice for patients suffering from ventricular arrhythmias (the main cause of sudden cardiac death) belonging to high risk populations to be treated via the implantation of Subcutaneous Implantable cardioverter-defibrillators (S-ICDs). S-ICDs carry a risk of so-called T wave over sensing (TWOS), which can lead to inappropriate shocks that carry an inherent health risk. For this reason, according to current practice patients’ Electrocardiograms (ECGs) are manually screened by a cardiologist over 10 s to assess the T:R ratio—the ratio between the amplitudes of the T and R waves which is used as a marker for the likelihood of TWOS—with a plastic template. Unfortunately, the temporal variability of a patient’ T:R ratio can render such a screening procedure, which relies on an inevitably short ECG segment due to its manual nature, unreliable. In this paper, we propose and investigate a tool based on deep learning for the automatic prediction of the T:R ratios from multiple 10-second segments of ECG recordings capable of carrying out a 24-hour automated screening. Thanks to the significantly increased screening window, such a screening would provide far more reliable T:R ratio predictions than the currently utilized 10-second, template-based, manual screening is capable of. Our tool is the first, to the best of our knowledge, to fully automate such an otherwise manual and potentially inaccurate procedure. From a methodological perspective, we evaluate different deep learning model architectures for our tool, assess a range of stochastic-gradient-descent-based optimization methods for training their underlying deep-learning model, perform hyperparameter tuning, and create ensembles of the best performing models in order to identify which combination leads to the best performance. We find that the resulting model, which has been integrated into a prototypical tool for use by clinicians, is able to predict T:R ratios with very high accuracy. Thanks to this, our automated T:R ratio detection tool will enable clinicians to provide a completely automated assessment of whether a patient is eligible for S-ICD implantation which is more reliable than current practice thanks to adopting a significantly longer ECG screening window which better and more accurately captures the behavior of the patient’s T:R ratio than the current manual practice.
Suggested Citation
Anthony J. Dunn & Stefano Coniglio & Mohamed ElRefai & Paul R. Roberts & Benedict M. Wiles & Alain B. Zemkoho, 2023.
"Deep learning and hyperparameter optimization for assessing one’s eligibility for a subcutaneous implantable cardioverter-defibrillator,"
Annals of Operations Research, Springer, vol. 328(1), pages 309-335, September.
Handle:
RePEc:spr:annopr:v:328:y:2023:i:1:d:10.1007_s10479-023-05326-1
DOI: 10.1007/s10479-023-05326-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:328:y:2023:i:1:d:10.1007_s10479-023-05326-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.