IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v325y2023i1d10.1007_s10479-022-05127-y.html
   My bibliography  Save this article

Estimation of player aging curves using regression and imputation

Author

Listed:
  • Michael Schuckers

    (St. Lawrence University)

  • Michael Lopez

    (National Football League)

  • Brian Macdonald

    (Yale University)

Abstract

The impact of age on performance is a fundamental component to models of player valuation and prediction across sport. Age effects are typically measured using age curves, which reflect the expected average performance at each age among all players that are eligible to participate. Most age curve methods, however, ignore the reality that age likewise influences which players receive opportunities to perform. In this paper we begin by highlighting how selection bias is linked to the ages in which we observe players perform. Next, using underlying distributions of how players move in and out of sport organizations, we assess the performance of various methods for age curve estimation under the selection bias of player entry and issues of small samples at younger and older ages. We propose several methods for player age curve estimation, introduce a missing data framework, and compare these new methods to more familiar approaches including both parametric and semi-parametric modeling. We then use simulations to compare several approaches for estimating aging curves. Imputation-based methods, as well as models that account for individual player skill, tend to generate lower root mean squared error (RMSE) and age curve shapes that better match the truth. We implement our approach using data from the National Hockey League. All of the data and code for this paper are available in a Github repository.

Suggested Citation

  • Michael Schuckers & Michael Lopez & Brian Macdonald, 2023. "Estimation of player aging curves using regression and imputation," Annals of Operations Research, Springer, vol. 325(1), pages 681-699, June.
  • Handle: RePEc:spr:annopr:v:325:y:2023:i:1:d:10.1007_s10479-022-05127-y
    DOI: 10.1007/s10479-022-05127-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-05127-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-05127-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fair Ray C, 2008. "Estimated Age Effects in Baseball," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 4(1), pages 1-41, January.
    2. Brander James A. & Egan Edward J. & Yeung Louisa, 2014. "Estimating the effects of age on NHL player performance," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 10(2), pages 241-259, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Araki, Kenji & Hirose, Yoshihiro & Komaki, Fumiyasu, 2019. "Paired comparison models with age effects modeled as piecewise quadratic splines," International Journal of Forecasting, Elsevier, vol. 35(2), pages 733-740.
    2. Rachel Scarfe & Carl Singleton & Adesola Sunmoni & Paul Telemo, 2024. "The age‐wage‐productivity puzzle: Evidence from the careers of top earners," Economic Inquiry, Western Economic Association International, vol. 62(2), pages 584-606, April.
    3. Jahn Hakes & Chad Turner, 2011. "Pay, productivity and aging in Major League Baseball," Journal of Productivity Analysis, Springer, vol. 35(1), pages 61-74, February.
    4. Assanskiy, Artur & Shaposhnikov, Daniil & Tylkin, Igor & Vasiliev, Gleb, 2022. "Prove them wrong: Do professional athletes perform better when facing their former clubs?," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 98(C).
    5. Anthony C. Krautmann & John L. Solow, 2009. "The Dynamics of Performance Over the Duration of Major League Baseball Long-Term Contracts," Journal of Sports Economics, , vol. 10(1), pages 6-22, February.
    6. Hamrick Jeff & Rasp John, 2011. "Using Local Correlation to Explain Success in Baseball," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(4), pages 1-29, October.
    7. Jorge Lorenzo-Calvo & Alfonso de la Rubia & Daniel Mon-López & Monica Hontoria-Galán & Moises Marquina & Santiago Veiga, 2021. "Prevalence and Impact of the Relative Age Effect on Competition Performance in Swimming: A Systematic Review," IJERPH, MDPI, vol. 18(20), pages 1-19, October.
    8. Null Brad, 2009. "Modeling Baseball Player Ability with a Nested Dirichlet Distribution," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(2), pages 1-38, May.
    9. John L. Solow & Anthony C. Krautmann, 2020. "Do You Get What You Pay for? Salary and Ex Ante Player Value in Major League Baseball," Journal of Sports Economics, , vol. 21(7), pages 705-722, October.
    10. Griffin Jim E. & Hinoveanu Laurenţiu C. & Hopker James G., 2022. "Bayesian modelling of elite sporting performance with large databases," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 18(4), pages 253-268, December.
    11. Katarzyna Gabrys & Antoni Wontorczyk, 2023. "Sport Anxiety, Fear of Negative Evaluation, Stress and Coping as Predictors of Athlete’s Sensitivity to the Behavior of Supporters," IJERPH, MDPI, vol. 20(12), pages 1-14, June.
    12. Nieswiadomy Michael L. & Strazicich Mark C. & Clayton Stephen, 2012. "Was There a Structural Break in Barry Bonds's Bat?," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(3), pages 1-19, October.
    13. Geoffrey N Tuck & Athol R Whitten, 2013. "Lead Us Not into Tanktation: A Simulation Modelling Approach to Gain Insights into Incentives for Sporting Teams to Tank," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-10, November.
    14. Brander James A. & Egan Edward J. & Yeung Louisa, 2014. "Estimating the effects of age on NHL player performance," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 10(2), pages 241-259, June.
    15. McShane Blakeley B. & Braunstein Alexander & Piette James & Jensen Shane T., 2011. "A Hierarchical Bayesian Variable Selection Approach to Major League Baseball Hitting Metrics," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(4), pages 1-26, October.
    16. Andrew W. Nutting, 2013. "Immediate Effects of On-The-Job Training and Its Intensity," Journal of Sports Economics, , vol. 14(3), pages 303-320, June.
    17. Gerber Eric A. E. & Craig Bruce A., 2021. "A mixed effects multinomial logistic-normal model for forecasting baseball performance," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(3), pages 221-239, September.
    18. Tiruneh Gizachew, 2010. "Age and Winning Professional Golf Tournaments," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(1), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:325:y:2023:i:1:d:10.1007_s10479-022-05127-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.