IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v312y2022i2d10.1007_s10479-021-04449-7.html
   My bibliography  Save this article

On the facets of stable set polytopes of circular interval graphs

Author

Listed:
  • Gianpaolo Oriolo

    (Università Tor Vergata)

  • Gautier Stauffer

    (Kedge Business School)

Abstract

A linear description of the stable set polytope STAB(G) of a quasi-line graph G is given in Eisenbrand et al. (Combinatorica 28(1):45–67, 2008), where the so called Ben Rebea Theorem (Oriolo in Discrete Appl Math 132(3):185–201, 2003) is proved. Such a theorem establishes that, for quasi-line graphs, STAB(G) is completely described by non-negativity constraints, clique inequalities, and clique family inequalities (CFIs). As quasi-line graphs are a superclass of line graphs, Ben Rebea Theorem can be seen as a generalization of Edmonds’ characterization of the matching polytope (Edmonds in J Res Natl Bureau Stand B 69:125–130, 1965), showing that the matching polytope can be described by non-negativity constraints, degree constraints and odd-set inequalities. Unfortunately, the description given by the Ben Rebea Theorem is not minimal, i.e., it is not known which are the (non-rank) clique family inequalities that are facet defining for STAB(G). To the contrary, it would be highly desirable to have a minimal description of STAB(G), pairing that of Edmonds and Pulleyblank (in: Berge, Chuadhuri (eds) Hypergraph seminar, pp 214–242, 1974) for the matching polytope. In this paper, we start the investigation of a minimal linear description for the stable set polytope of quasi-line graphs. We focus on circular interval graphs, a subclass of quasi-line graphs that is central in the proof of the Ben Rebea Theorem. For this class of graphs, we move an important step forward, showing some strong sufficient conditions for a CFI to induce a facet of STAB(G). In particular, such conditions come out to be related to the existence of certain proper circulant graphs as subgraphs of G. These results allows us to settle two conjectures on the structure of facet defining inequalities of the stable set polytope of circulant graphs (Pêcher and Wagler in Math Program 105:311–328, 2006) and of (fuzzy) circular graphs (Oriolo and Stauffer in Math Program 115:291–317, 2008), and to slightly refine the Ben Rebea Theorem itself.

Suggested Citation

  • Gianpaolo Oriolo & Gautier Stauffer, 2022. "On the facets of stable set polytopes of circular interval graphs," Annals of Operations Research, Springer, vol. 312(2), pages 1007-1029, May.
  • Handle: RePEc:spr:annopr:v:312:y:2022:i:2:d:10.1007_s10479-021-04449-7
    DOI: 10.1007/s10479-021-04449-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04449-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04449-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas M. Liebling & Gianpaolo Oriolo & Bianca Spille & Gautier Stauffer, 2004. "On non-rank facets of the stable set polytope of claw-free graphs and circulant graphs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 59(1), pages 25-35, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Galluccio & Claudio Gentile & Paolo Ventura, 2009. "Gear Composition of Stable Set Polytopes and (G-script)-Perfection," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 813-836, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:312:y:2022:i:2:d:10.1007_s10479-021-04449-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.