IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v312y2022i2d10.1007_s10479-017-2590-4.html
   My bibliography  Save this article

Finding the most sustainable wind farm sites with a hierarchical outranking decision aiding method

Author

Listed:
  • Arayeh Afsordegan

    (Ramon Llull University)

  • Luis Del Vasto-Terrientes

    (Universitat Rovira i Virgili)

  • Aida Valls

    (Universitat Rovira i Virgili)

  • Núria Agell

    (Ramon Llull University)

  • Mónica Sánchez

    (UPC-BarcelonaTech)

Abstract

This paper considers the problem of finding suitable sites for wind farms in a region of Catalonia (Spain). The evaluation criteria are structured into a hierarchy that identifies several intermediate sub-goals dealing with different points of view. Therefore, the recent ELECTRE-III-H hierarchical multi-criteria analysis method is proposed as a good solution to help decision-makers. This method establishes an order among the set of possible sites for the wind farms for each sub-goal. ELECTRE-III-H aggregates these orders into an overall order using different parameters. The procedure is based on the construction and exploitation of a pairwise outranking relation, following the principles of concordance (i.e. majority rule) and discordance (i.e. respect for the minority opinions). This paper makes two main contributions. First, it contributes to the ELECTRE-III-H method by studying its mathematical properties for the construction of outranking relations. Second, the case study is solved and its results show that we can effectively represent and manage the overall influence of the various criteria on the global result at different levels of the hierarchy. The paper compares different scenarios with strict, normal, and optimistic preference, indifference and veto thresholds. Results show that the best site differs for technical, economic, environmental, and social intermediate criteria. Therefore, the best overall solution changes depending on the preference and veto thresholds fixed at the intermediate level of the hierarchy.

Suggested Citation

  • Arayeh Afsordegan & Luis Del Vasto-Terrientes & Aida Valls & Núria Agell & Mónica Sánchez, 2022. "Finding the most sustainable wind farm sites with a hierarchical outranking decision aiding method," Annals of Operations Research, Springer, vol. 312(2), pages 1307-1335, May.
  • Handle: RePEc:spr:annopr:v:312:y:2022:i:2:d:10.1007_s10479-017-2590-4
    DOI: 10.1007/s10479-017-2590-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2590-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2590-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yorgos Goletsis & John Psarras & Jesus-Emmanuel Samouilidis, 2003. "Project Ranking in the Armenian Energy Sector Using a Multicriteria Method for Groups," Annals of Operations Research, Springer, vol. 120(1), pages 135-157, April.
    2. Aras, Haydar & Erdoğmuş, Şenol & Koç, Eylem, 2004. "Multi-criteria selection for a wind observation station location using analytic hierarchy process," Renewable Energy, Elsevier, vol. 29(8), pages 1383-1392.
    3. Gamboa, Gonzalo & Munda, Giuseppe, 2007. "The problem of windfarm location: A social multi-criteria evaluation framework," Energy Policy, Elsevier, vol. 35(3), pages 1564-1583, March.
    4. Gallego Carrera, Diana & Mack, Alexander, 2010. "Sustainability assessment of energy technologies via social indicators: Results of a survey among European energy experts," Energy Policy, Elsevier, vol. 38(2), pages 1030-1039, February.
    5. Figueira, José Rui & Roy, Bernard, 2009. "A note on the paper, "Ranking irregularities when evaluating alternatives by using some ELECTRE methods", by Wang and Triantaphyllou, Omega (2008)," Omega, Elsevier, vol. 37(3), pages 731-733, June.
    6. Vargas, Luis G., 1994. "Reply to Schenkerman's avoiding rank reversal in AHP decision support models," European Journal of Operational Research, Elsevier, vol. 74(3), pages 420-425, May.
    7. Bouyssou, Denis & Pirlot, Marc, 2009. "An axiomatic analysis of concordance-discordance relations," European Journal of Operational Research, Elsevier, vol. 199(2), pages 468-477, December.
    8. Saaty, Thomas L & Vargas, Luis G, 1984. "The legitimacy of rank reversal," Omega, Elsevier, vol. 12(5), pages 513-516.
    9. Afgan, Naim H. & Carvalho, Maria G., 2002. "Multi-criteria assessment of new and renewable energy power plants," Energy, Elsevier, vol. 27(8), pages 739-755.
    10. Wang, Xiaoting & Triantaphyllou, Evangelos, 2008. "Ranking irregularities when evaluating alternatives by using some ELECTRE methods," Omega, Elsevier, vol. 36(1), pages 45-63, February.
    11. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    12. Tsoutsos, Theocharis & Drandaki, Maria & Frantzeskaki, Niki & Iosifidis, Eleftherios & Kiosses, Ioannis, 2009. "Sustainable energy planning by using multi-criteria analysis application in the island of Crete," Energy Policy, Elsevier, vol. 37(5), pages 1587-1600, May.
    13. Radics, Kornélia & Bartholy, Judit, 2008. "Estimating and modelling the wind resource of Hungary," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 874-882, April.
    14. Yeh, Tsu-Ming & Huang, Yu-Lang, 2014. "Factors in determining wind farm location: Integrating GQM, fuzzy DEMATEL, and ANP," Renewable Energy, Elsevier, vol. 66(C), pages 159-169.
    15. Lee, Amy H.I. & Chen, Hsing Hung & Kang, He-Yau, 2009. "Multi-criteria decision making on strategic selection of wind farms," Renewable Energy, Elsevier, vol. 34(1), pages 120-126.
    16. Papadopoulos, Agis & Karagiannidis, Avraam, 2008. "Application of the multi-criteria analysis method Electre III for the optimisation of decentralised energy systems," Omega, Elsevier, vol. 36(5), pages 766-776, October.
    17. Torres Sibille, Ana del Carmen & Cloquell-Ballester, Víctor-Andrés & Cloquell-Ballester, Vicente-Agustín & Darton, Richard, 2009. "Development and validation of a multicriteria indicator for the assessment of objective aesthetic impact of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 40-66, January.
    18. Enzensberger, N. & Wietschel, M. & Rentz, O., 2002. "Policy instruments fostering wind energy projects--a multi-perspective evaluation approach," Energy Policy, Elsevier, vol. 30(9), pages 793-801, July.
    19. Georgopoulou, E. & Sarafidis, Y. & Diakoulaki, D., 1998. "Design and implementation of a group DSS for sustaining renewable energies exploitation," European Journal of Operational Research, Elsevier, vol. 109(2), pages 483-500, September.
    20. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    21. Jing, You-Yin & Bai, He & Wang, Jiang-Jiang, 2012. "A fuzzy multi-criteria decision-making model for CCHP systems driven by different energy sources," Energy Policy, Elsevier, vol. 42(C), pages 286-296.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    2. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Zainab Khalifah, 2015. "Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches," Sustainability, MDPI, vol. 7(10), pages 1-38, October.
    3. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    4. Liu, Gang, 2014. "Development of a general sustainability indicator for renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 611-621.
    5. Rodrigo A. Estévez & Valeria Espinoza & Roberto D. Ponce Oliva & Felipe Vásquez-Lavín & Stefan Gelcich, 2021. "Multi-Criteria Decision Analysis for Renewable Energies: Research Trends, Gaps and the Challenge of Improving Participation," Sustainability, MDPI, vol. 13(6), pages 1-13, March.
    6. Troldborg, Mads & Heslop, Simon & Hough, Rupert L., 2014. "Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1173-1184.
    7. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    8. Büyüközkan, Gülçin & Güleryüz, Sezin, 2016. "An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey," International Journal of Production Economics, Elsevier, vol. 182(C), pages 435-448.
    9. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    10. Paweł Ziemba, 2019. "Inter-Criteria Dependencies-Based Decision Support in the Sustainable wind Energy Management," Energies, MDPI, vol. 12(4), pages 1-29, February.
    11. Ribeiro, Fernando & Ferreira, Paula & Araújo, Madalena, 2011. "The inclusion of social aspects in power planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4361-4369.
    12. Klein, Sharon J.W. & Whalley, Stephanie, 2015. "Comparing the sustainability of U.S. electricity options through multi-criteria decision analysis," Energy Policy, Elsevier, vol. 79(C), pages 127-149.
    13. Kowalski, Katharina & Stagl, Sigrid & Madlener, Reinhard & Omann, Ines, 2009. "Sustainable energy futures: Methodological challenges in combining scenarios and participatory multi-criteria analysis," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1063-1074, September.
    14. Mainali, Brijesh & Silveira, Semida, 2015. "Using a sustainability index to assess energy technologies for rural electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1351-1365.
    15. Stein, Eric W., 2013. "A comprehensive multi-criteria model to rank electric energy production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 640-654.
    16. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    17. Govindan, Kannan & Jepsen, Martin Brandt, 2016. "ELECTRE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 250(1), pages 1-29.
    18. Doukas, Haris, 2013. "Modelling of linguistic variables in multicriteria energy policy support," European Journal of Operational Research, Elsevier, vol. 227(2), pages 227-238.
    19. Streimikiene, Dalia & Balezentis, Tomas & Krisciukaitienė, Irena & Balezentis, Alvydas, 2012. "Prioritizing sustainable electricity production technologies: MCDM approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3302-3311.
    20. Maxim, Alexandru, 2014. "Sustainability assessment of electricity generation technologies using weighted multi-criteria decision analysis," Energy Policy, Elsevier, vol. 65(C), pages 284-297.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:312:y:2022:i:2:d:10.1007_s10479-017-2590-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.