IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v295y2020i2d10.1007_s10479-020-03810-6.html
   My bibliography  Save this article

An improved binary programming formulation for the secure domination problem

Author

Listed:
  • Ryan Burdett

    (Flinders University)

  • Michael Haythorpe

    (Flinders University)

Abstract

The secure domination problem, a variation of the domination problem with some important real-world applications, is considered. Very few algorithmic attempts to solve this problem have been presented in literature, and the most successful to date is a binary programming formulation which is solved using CPLEX. A new binary programming formulation is proposed here which requires fewer constraints and fewer binary variables than the existing formulation. It is implemented in CPLEX, and tested on certain families of graphs that have previously been considered in the context of secure domination. It is shown that the runtime required for the new formulation to solve the instances is significantly less than that of the existing formulation. An extension of our formulation that solves the related, but further constrained, secure connected domination problem is also given; to the best of the authors’ knowledge, this is the first such formulation in literature.

Suggested Citation

  • Ryan Burdett & Michael Haythorpe, 2020. "An improved binary programming formulation for the secure domination problem," Annals of Operations Research, Springer, vol. 295(2), pages 561-573, December.
  • Handle: RePEc:spr:annopr:v:295:y:2020:i:2:d:10.1007_s10479-020-03810-6
    DOI: 10.1007/s10479-020-03810-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03810-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03810-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Pradhan & Anupriya Jha, 2018. "On computing a minimum secure dominating set in block graphs," Journal of Combinatorial Optimization, Springer, vol. 35(2), pages 613-631, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:295:y:2020:i:2:d:10.1007_s10479-020-03810-6. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.