IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v289y2020i2d10.1007_s10479-020-03604-w.html
   My bibliography  Save this article

An effective heuristic based on column generation for the two-dimensional three-stage steel plate cutting problem

Author

Listed:
  • Jianyu Long

    (Dongguan University of Technology
    Chongqing University)

  • Zhong Zheng

    (Chongqing University)

  • Xiaoqiang Gao

    (Chongqing University)

  • Panos M. Pardalos

    (University of Florida)

  • Wanzhe Hu

    (Chongqing University
    University of Florida)

Abstract

In this study, we focus on the steel plate cutting problem (SPCP), where a set of rectangular order plates with specified demand are cut from large rectangular steel plates. The aim of solving SPCP is to minimize the number of steel plates used in the cutting process. According to the analysis of the cutting production line in steel mills, we regard the SPCP as a two-dimensional non-exact three-stage cutting stock problem (2D3SCSP) with two additional practical constraints. Since these two practical constraints limit the length between any two adjacent guillotine cuts in the first stage by a predetermined parameter and the number of guillotine cuts in the second stage by one, the existing solving methods proposed for 2D3SCSP cannot be used for SPCP directly. Four heuristics based on column generation (HCG) are proposed to solve SPCP. The performance of the four HCGs is analyzed through conducting a set of experiments, and an effective HCG with the ability of obtaining high-quality solutions within acceptable computational times is finally obtained.

Suggested Citation

  • Jianyu Long & Zhong Zheng & Xiaoqiang Gao & Panos M. Pardalos & Wanzhe Hu, 2020. "An effective heuristic based on column generation for the two-dimensional three-stage steel plate cutting problem," Annals of Operations Research, Springer, vol. 289(2), pages 291-311, June.
  • Handle: RePEc:spr:annopr:v:289:y:2020:i:2:d:10.1007_s10479-020-03604-w
    DOI: 10.1007/s10479-020-03604-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03604-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03604-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silva, Elsa & Alvelos, Filipe & Valério de Carvalho, J.M., 2010. "An integer programming model for two- and three-stage two-dimensional cutting stock problems," European Journal of Operational Research, Elsevier, vol. 205(3), pages 699-708, September.
    2. François Vanderbeck, 2001. "A Nested Decomposition Approach to a Three-Stage, Two-Dimensional Cutting-Stock Problem," Management Science, INFORMS, vol. 47(6), pages 864-879, June.
    3. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    4. Bahadır Durak & Dilek Tuzun Aksu, 2017. "Dynamic programming and mixed integer programming based algorithms for the online glass cutting problem with defects and production targets," International Journal of Production Research, Taylor & Francis Journals, vol. 55(24), pages 7398-7411, December.
    5. Vitor Nesello & Maxence Delorme & Manuel Iori & Anand Subramanian, 2018. "Mathematical models and decomposition algorithms for makespan minimization in plastic rolls production," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(3), pages 326-339, March.
    6. Célia Paquay & Sabine Limbourg & Michaël Schyns & José Fernando Oliveira, 2018. "MIP-based constructive heuristics for the three-dimensional Bin Packing Problem with transportation constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 56(4), pages 1581-1592, February.
    7. Nasr Al-Hinai & Chefi Triki, 2020. "A two-level evolutionary algorithm for solving the petrol station replenishment problem with periodicity constraints and service choice," Annals of Operations Research, Springer, vol. 286(1), pages 325-350, March.
    8. Cintra, G.F. & Miyazawa, F.K. & Wakabayashi, Y. & Xavier, E.C., 2008. "Algorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation," European Journal of Operational Research, Elsevier, vol. 191(1), pages 61-85, November.
    9. Puchinger, Jakob & Raidl, Gunther R., 2007. "Models and algorithms for three-stage two-dimensional bin packing," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1304-1327, December.
    10. Puca Huachi Vaz Penna & Anand Subramanian & Luiz Satoru Ochi & Thibaut Vidal & Christian Prins, 2019. "A hybrid heuristic for a broad class of vehicle routing problems with heterogeneous fleet," Annals of Operations Research, Springer, vol. 273(1), pages 5-74, February.
    11. Yaodong Cui, 2013. "A new dynamic programming procedure for three-staged cutting patterns," Journal of Global Optimization, Springer, vol. 55(2), pages 349-357, February.
    12. M Mrad & I Meftahi & M Haouari, 2013. "A branch-and-price algorithm for the two-stage guillotine cutting stock problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(5), pages 629-637, May.
    13. Harald Dyckhoff, 1981. "A New Linear Programming Approach to the Cutting Stock Problem," Operations Research, INFORMS, vol. 29(6), pages 1092-1104, December.
    14. Haessler, Robert W. & Sweeney, Paul E., 1991. "Cutting stock problems and solution procedures," European Journal of Operational Research, Elsevier, vol. 54(2), pages 141-150, September.
    15. Furini, Fabio & Malaguti, Enrico & Medina Durán, Rosa & Persiani, Alfredo & Toth, Paolo, 2012. "A column generation heuristic for the two-dimensional two-staged guillotine cutting stock problem with multiple stock size," European Journal of Operational Research, Elsevier, vol. 218(1), pages 251-260.
    16. Goncalves, Jose Fernando, 2007. "A hybrid genetic algorithm-heuristic for a two-dimensional orthogonal packing problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1212-1229, December.
    17. Lodi, Andrea & Martello, Silvano & Monaci, Michele, 2002. "Two-dimensional packing problems: A survey," European Journal of Operational Research, Elsevier, vol. 141(2), pages 241-252, September.
    18. Lin Liu & Xinbao Liu & Jun Pei & Wenjuan Fan & Panos M. Pardalos, 2017. "A study on decision making of cutting stock with frustum of cone bars," Operational Research, Springer, vol. 17(1), pages 187-204, April.
    19. Belov, G. & Scheithauer, G., 2006. "A branch-and-cut-and-price algorithm for one-dimensional stock cutting and two-dimensional two-stage cutting," European Journal of Operational Research, Elsevier, vol. 171(1), pages 85-106, May.
    20. Andrea Lodi & Silvano Martello & Daniele Vigo, 2004. "Models and Bounds for Two-Dimensional Level Packing Problems," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 363-379, September.
    21. P. C. Gilmore & R. E. Gomory, 1965. "Multistage Cutting Stock Problems of Two and More Dimensions," Operations Research, INFORMS, vol. 13(1), pages 94-120, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    2. Hadj Salem, Khadija & Silva, Elsa & Oliveira, José Fernando & Carravilla, Maria Antónia, 2023. "Mathematical models for the two-dimensional variable-sized cutting stock problem in the home textile industry," European Journal of Operational Research, Elsevier, vol. 306(2), pages 549-566.
    3. Silva, Elsa & Alvelos, Filipe & Valério de Carvalho, J.M., 2010. "An integer programming model for two- and three-stage two-dimensional cutting stock problems," European Journal of Operational Research, Elsevier, vol. 205(3), pages 699-708, September.
    4. Fabio Furini & Enrico Malaguti & Dimitri Thomopulos, 2016. "Modeling Two-Dimensional Guillotine Cutting Problems via Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 736-751, November.
    5. Jean-François Côté & Manuel Iori, 2018. "The Meet-in-the-Middle Principle for Cutting and Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 646-661, November.
    6. Cui, Yaodong & Huang, Baixiong, 2012. "Reducing the number of cuts in generating three-staged cutting patterns," European Journal of Operational Research, Elsevier, vol. 218(2), pages 358-365.
    7. Cui, Yaodong & Yang, Liu & Zhao, Zhigang & Tang, Tianbing & Yin, Mengxiao, 2013. "Sequential grouping heuristic for the two-dimensional cutting stock problem with pattern reduction," International Journal of Production Economics, Elsevier, vol. 144(2), pages 432-439.
    8. François Clautiaux & Ruslan Sadykov & François Vanderbeck & Quentin Viaud, 2019. "Pattern-based diving heuristics for a two-dimensional guillotine cutting-stock problem with leftovers," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 265-297, September.
    9. Rapine, Christophe & Pedroso, Joao Pedro & Akbalik, Ayse, 2022. "The two-dimensional knapsack problem with splittable items in stacks," Omega, Elsevier, vol. 112(C).
    10. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    11. Malaguti, Enrico & Medina Durán, Rosa & Toth, Paolo, 2014. "Approaches to real world two-dimensional cutting problems," Omega, Elsevier, vol. 47(C), pages 99-115.
    12. Kallrath, Julia & Rebennack, Steffen & Kallrath, Josef & Kusche, Rüdiger, 2014. "Solving real-world cutting stock-problems in the paper industry: Mathematical approaches, experience and challenges," European Journal of Operational Research, Elsevier, vol. 238(1), pages 374-389.
    13. Douglas Nogueira Nascimento & Adriana Cristina Cherri & José Fernando Oliveira, 2022. "The two-dimensional cutting stock problem with usable leftovers: mathematical modelling and heuristic approaches," Operational Research, Springer, vol. 22(5), pages 5363-5403, November.
    14. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    15. Parreño, F. & Alvarez-Valdes, R., 2021. "Mathematical models for a cutting problem in the glass manufacturing industry," Omega, Elsevier, vol. 103(C).
    16. Silva, Elsa & Oliveira, José Fernando & Silveira, Tiago & Mundim, Leandro & Carravilla, Maria Antónia, 2023. "The Floating-Cuts model: a general and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems," Omega, Elsevier, vol. 114(C).
    17. Russo, Mauro & Sforza, Antonio & Sterle, Claudio, 2013. "An improvement of the knapsack function based algorithm of Gilmore and Gomory for the unconstrained two-dimensional guillotine cutting problem," International Journal of Production Economics, Elsevier, vol. 145(2), pages 451-462.
    18. Bayliss, Christopher & Currie, Christine S.M. & Bennell, Julia A. & Martinez-Sykora, Antonio, 2021. "Queue-constrained packing: A vehicle ferry case study," European Journal of Operational Research, Elsevier, vol. 289(2), pages 727-741.
    19. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    20. W. D. D. Madhavee & N. Saldin & U. C. Vaidyarathna & C. J. Jayawardene, 2018. "A Practical Application of the Generalized Cutting Stock Algorithm," Academic Journal of Applied Mathematical Sciences, Academic Research Publishing Group, vol. 4(3), pages 15-21, 03-2018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:289:y:2020:i:2:d:10.1007_s10479-020-03604-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.