IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v278y2019i1d10.1007_s10479-018-2867-2.html
   My bibliography  Save this article

DEA models with Russell measures

Author

Listed:
  • Wanfang Shen

    (Shandong University of Finance and Economics)

  • Guoliang Yang

    (Chinese Academy of Sciences)

  • Zhongbao Zhou

    (Hunan University)

  • Wenbin Liu

    (University of Kent)

Abstract

In real applications, data envelopment analysis models with Russell measures are widely used although their theoretical studies are scattered over the literature. They often have seemingly similar structures but play very different roles in performance evaluation. In this work, we systematically examine some of the models from the viewpoint of preferences used in their production possibility sets (PPS). We identify their key differences through the convexity and free-disposability of their PPS. We believe that this study will provide guidelines for the correct use of these models. Two empirical cases are used to compare their differences.

Suggested Citation

  • Wanfang Shen & Guoliang Yang & Zhongbao Zhou & Wenbin Liu, 2019. "DEA models with Russell measures," Annals of Operations Research, Springer, vol. 278(1), pages 337-359, July.
  • Handle: RePEc:spr:annopr:v:278:y:2019:i:1:d:10.1007_s10479-018-2867-2
    DOI: 10.1007/s10479-018-2867-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-2867-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-2867-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Bogetoft & Jens Hougaard, 1999. "Efficiency Evaluations Based on Potential (Non-Proportional) Improvements," Journal of Productivity Analysis, Springer, vol. 12(3), pages 233-247, November.
    2. Liu, Wenbin & Zhou, Zhongbao & Liu, Debin & Xiao, Helu, 2015. "Estimation of portfolio efficiency via DEA," Omega, Elsevier, vol. 52(C), pages 107-118.
    3. Wenbin Liu & John Sharp & Zhongmin Wu, 2006. "Preference, Production and Performance in Data Envelopment Analysis," Annals of Operations Research, Springer, vol. 145(1), pages 105-127, July.
    4. Ray,Subhash C., 2012. "Data Envelopment Analysis," Cambridge Books, Cambridge University Press, number 9781107405264, January.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. D Zhang & X Li & W Meng & W Liu, 2009. "Measuring the performance of nations at the Olympic Games using DEA models with different preferences," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 983-990, July.
    7. Seifert, Lawrence M. & Zhu, Joe, 1998. "Identifying Excesses and Deficits in Chinese Industrial Productivity (1953-1990): a Weighted Data Envelopment Analysis Approach," Omega, Elsevier, vol. 26(2), pages 279-296, April.
    8. Steven Levkoff & R. Russell & William Schworm, 2012. "Boundary problems with the “Russell” graph measure of technical efficiency: a refinement," Journal of Productivity Analysis, Springer, vol. 37(3), pages 239-248, June.
    9. Zhu, Joe, 1998. "Data envelopment analysis vs. principal component analysis: An illustrative study of economic performance of Chinese cities," European Journal of Operational Research, Elsevier, vol. 111(1), pages 50-61, November.
    10. W. Liu & W. Meng & X. Li & D. Zhang, 2010. "DEA models with undesirable inputs and outputs," Annals of Operations Research, Springer, vol. 173(1), pages 177-194, January.
    11. Liu, Wenbin & Zhou, Zhongbao & Ma, Chaoqun & Liu, Debin & Shen, Wanfang, 2015. "Two-stage DEA models with undesirable input-intermediate-outputs," Omega, Elsevier, vol. 56(C), pages 74-87.
    12. Joe Zhu, 2009. "Envelopment DEA Models," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, chapter 1, pages 1-42, Springer.
    13. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2006. "Introduction to Data Envelopment Analysis and Its Uses," Springer Books, Springer, number 978-0-387-29122-2, April.
    14. Liu, W.B. & Zhang, D.Q. & Meng, W. & Li, X.X. & Xu, F., 2011. "A study of DEA models without explicit inputs," Omega, Elsevier, vol. 39(5), pages 472-480, October.
    15. R. Russell & William Schworm, 2009. "Axiomatic foundations of efficiency measurement on data-generated technologies," Journal of Productivity Analysis, Springer, vol. 31(2), pages 77-86, April.
    16. Cooper, W.W. & Huang, Zhimin & Li, Susan X. & Parker, Barnett R. & Pastor, Jesus T., 2007. "Efficiency aggregation with enhanced Russell measures in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 41(1), pages 1-21, March.
    17. Seiford, Lawrence M. & Zhu, Joe, 2003. "Context-dependent data envelopment analysis--Measuring attractiveness and progress," Omega, Elsevier, vol. 31(5), pages 397-408, October.
    18. Chen, Yao & Sherman, H. David, 2004. "The benefits of non-radial vs. radial super-efficiency DEA: an application to burden-sharing amongst NATO member nations," Socio-Economic Planning Sciences, Elsevier, vol. 38(4), pages 307-320, December.
    19. R. Robert Russell & William Schworm, 2009. "Axiomatic Foundations of Inefficiency Measurement on Space," Discussion Papers 2009-07, School of Economics, The University of New South Wales.
    20. Fare, Rolf & Knox Lovell, C. A., 1978. "Measuring the technical efficiency of production," Journal of Economic Theory, Elsevier, vol. 19(1), pages 150-162, October.
    21. Pastor, J. T. & Ruiz, J. L. & Sirvent, I., 1999. "An enhanced DEA Russell graph efficiency measure," European Journal of Operational Research, Elsevier, vol. 115(3), pages 596-607, June.
    22. Joe Zhu, 2009. "Quantitative Models for Performance Evaluation and Benchmarking," International Series in Operations Research and Management Science, Springer, number 978-0-387-85982-8, January.
    23. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, April.
    24. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dyckhoff, Harald & Souren, Rainer, 2022. "Integrating multiple criteria decision analysis and production theory for performance evaluation: Framework and review," European Journal of Operational Research, Elsevier, vol. 297(3), pages 795-816.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    2. Mette Asmild & Tomas Baležentis & Jens Leth Hougaard, 2016. "Multi-directional productivity change: MEA-Malmquist," Journal of Productivity Analysis, Springer, vol. 46(2), pages 109-119, December.
    3. W. Liu & W. Meng & X. Li & D. Zhang, 2010. "DEA models with undesirable inputs and outputs," Annals of Operations Research, Springer, vol. 173(1), pages 177-194, January.
    4. Liu, W.B. & Zhang, D.Q. & Meng, W. & Li, X.X. & Xu, F., 2011. "A study of DEA models without explicit inputs," Omega, Elsevier, vol. 39(5), pages 472-480, October.
    5. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    6. Halická, Margaréta & Trnovská, Mária, 2021. "A unified approach to non-radial graph models in data envelopment analysis: common features, geometry, and duality," European Journal of Operational Research, Elsevier, vol. 289(2), pages 611-627.
    7. R. Robert Russell & William Schworm, 2018. "Technological inefficiency indexes: a binary taxonomy and a generic theorem," Journal of Productivity Analysis, Springer, vol. 49(1), pages 17-23, February.
    8. Alcaraz, Javier & Anton-Sanchez, Laura & Aparicio, Juan & Monge, Juan F. & Ramón, Nuria, 2021. "Russell Graph efficiency measures in Data Envelopment Analysis: The multiplicative approach," European Journal of Operational Research, Elsevier, vol. 292(2), pages 663-674.
    9. Aparicio, Juan & Borras, Fernando & Pastor, Jesus T. & Vidal, Fernando, 2015. "Measuring and decomposing firm׳s revenue and cost efficiency: The Russell measures revisited," International Journal of Production Economics, Elsevier, vol. 165(C), pages 19-28.
    10. Lai, Po‐Lin & Potter, Andrew & Beynon, Malcolm & Beresford, Anthony, 2015. "Evaluating the efficiency performance of airports using an integrated AHP/DEA-AR technique," Transport Policy, Elsevier, vol. 42(C), pages 75-85.
    11. Asmild, Mette & Pastor, Jesús T., 2010. "Slack free MEA and RDM with comprehensive efficiency measures," Omega, Elsevier, vol. 38(6), pages 475-483, December.
    12. Jesus Pastor & C. Lovell & Juan Aparicio, 2012. "Families of linear efficiency programs based on Debreu’s loss function," Journal of Productivity Analysis, Springer, vol. 38(2), pages 109-120, October.
    13. Rashidi, Kamran & Cullinane, Kevin, 2019. "Evaluating the sustainability of national logistics performance using Data Envelopment Analysis," Transport Policy, Elsevier, vol. 74(C), pages 35-46.
    14. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    15. Cooper, W.W. & Huang, Zhimin & Li, Susan X. & Parker, Barnett R. & Pastor, Jesus T., 2007. "Efficiency aggregation with enhanced Russell measures in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 41(1), pages 1-21, March.
    16. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2009. "An occurrence of multiple projections in DEA-based measurement of technical efficiency: Theoretical comparison among DEA models from desirable properties," European Journal of Operational Research, Elsevier, vol. 196(2), pages 764-794, July.
    17. R. Russell & William Schworm, 2011. "Properties of inefficiency indexes on 〈input, output〉 space," Journal of Productivity Analysis, Springer, vol. 36(2), pages 143-156, October.
    18. Aparicio, Juan & Monge, Juan F. & Ramón, Nuria, 2021. "A new measure of technical efficiency in data envelopment analysis based on the maximization of hypervolumes: Benchmarking, properties and computational aspects," European Journal of Operational Research, Elsevier, vol. 293(1), pages 263-275.
    19. W. Cooper & L. Seiford & K. Tone & J. Zhu, 2007. "Some models and measures for evaluating performances with DEA: past accomplishments and future prospects," Journal of Productivity Analysis, Springer, vol. 28(3), pages 151-163, December.
    20. Hirofumi Fukuyama & Hiroya Masaki & Kazuyuki Sekitani & Jianming Shi, 2014. "Distance optimization approach to ratio-form efficiency measures in data envelopment analysis," Journal of Productivity Analysis, Springer, vol. 42(2), pages 175-186, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:278:y:2019:i:1:d:10.1007_s10479-018-2867-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.