IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v244y2016i2d10.1007_s10479-016-2145-0.html
   My bibliography  Save this article

Static target search path planning optimization with heterogeneous agents

Author

Listed:
  • Jean Berger

    (DRDC Valcartier)

  • Nassirou Lo

    (T-OptLogic Ltd.)

  • Mohamed Barkaoui

    (Carthage University)

Abstract

As discrete multi-agent static open-loop target search path planning known to be computationally hard recently proved to be solvable in practice in the homogeneous case, its heterogeneous problem counterpart still remains very difficult. The heterogeneous problem introduces broken symmetry reflected by dissimilar sensing ability/capacity, agent capability and relative velocity and, is further exacerbated when operating under near real-time problem-solving constraints, as key decision variables grow exponentially in the number of agents. Departing from the homogeneous agent model already published, new integer linear and quadratic programming formulations are proposed to reduce computational complexity and near-optimally solve the discrete static search path planning problem involving heterogeneous agents. The novelty consists in taking advantage of typical optimal path solution property to derive new tractable problem models. At the expense of a slightly accrued computational complexity, the proposed quadratic integer program formulation conveys considerable benefit by keeping key decision variables linear in the number of agents. The convexity property of its defined objective function further allows ensuring global optimality when a local optimum is computed. Special agent network representations capturing individual agent decision moves are also devised to simplify problem modeling and expedite constraint modeling specification. As a result, cost-effective quadratic program implementation for realistic problems may be achieved to rapidly compute near-optimal solutions, while providing a robust bound on solution quality through Lagrangian relaxation.

Suggested Citation

  • Jean Berger & Nassirou Lo & Mohamed Barkaoui, 2016. "Static target search path planning optimization with heterogeneous agents," Annals of Operations Research, Springer, vol. 244(2), pages 295-312, September.
  • Handle: RePEc:spr:annopr:v:244:y:2016:i:2:d:10.1007_s10479-016-2145-0
    DOI: 10.1007/s10479-016-2145-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2145-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2145-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. E. Trummel & J. R. Weisinger, 1986. "Technical Note—The Complexity of the Optimal Searcher Path Problem," Operations Research, INFORMS, vol. 34(2), pages 324-327, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Barkaoui & J. Berger & A. Boukhtouta, 2019. "An evolutionary approach for the target search problem in uncertain environment," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 808-835, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steven M. Shechter & Farhad Ghassemi & Yasin Gocgun & Martin L. Puterman, 2015. "Technical Note—Trading Off Quick versus Slow Actions in Optimal Search," Operations Research, INFORMS, vol. 63(2), pages 353-362, April.
    2. J F J Vermeulen & M van den Brink, 2005. "The search for an alerted moving target," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 514-525, May.
    3. T. C. E. Cheng & B. Kriheli & E. Levner & C. T. Ng, 2021. "Scheduling an autonomous robot searching for hidden targets," Annals of Operations Research, Springer, vol. 298(1), pages 95-109, March.
    4. Jesse Pietz & Johannes O. Royset, 2013. "Generalized orienteering problem with resource dependent rewards," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(4), pages 294-312, June.
    5. Ben Hermans & Roel Leus & Jannik Matuschke, 2022. "Exact and Approximation Algorithms for the Expanding Search Problem," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 281-296, January.
    6. Bourque, François-Alex, 2019. "Solving the moving target search problem using indistinguishable searchers," European Journal of Operational Research, Elsevier, vol. 275(1), pages 45-52.
    7. Nikolai Stein & Jan Meller & Christoph M. Flath, 2018. "Big data on the shop-floor: sensor-based decision-support for manual processes," Journal of Business Economics, Springer, vol. 88(5), pages 593-616, July.
    8. Morin, Michael & Abi-Zeid, Irène & Quimper, Claude-Guy, 2023. "Ant colony optimization for path planning in search and rescue operations," European Journal of Operational Research, Elsevier, vol. 305(1), pages 53-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:244:y:2016:i:2:d:10.1007_s10479-016-2145-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.