IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v206y2013i1p577-58310.1007-s10479-013-1364-x.html
   My bibliography  Save this article

Strong NP-hardness of scheduling problems with learning or aging effect

Author

Listed:
  • Adam Janiak
  • Mikhail Kovalyov
  • Maciej Lichtenstein

Abstract

Proofs of strong NP-hardness of single machine and two-machine flowshop scheduling problems with learning or aging effect given in Rudek (Computers & Industrial Engineering 61:20–31, 2011 ; Annals of Operations Research 196(1):491–516, 2012a ; International Journal of Advanced Manufacturing Technology 59:299–309, 2012b ; Applied Mathematics and Computations 218:6498–6510, 2012c ; Applied Mathematical Modelling 37:1523–1536, 2013 ) contain a common mistake that make them incomplete. We reveal the mistake and provide necessary corrections for the problems in Rudek (Computers & Industrial Engineering 61:20–31, 2011 ; Annals of Operations Research 196(1):491–516, 2012a ; Applied Mathematical Modelling 37:1523–1536, 2013 ). NP-hardness of problems in Rudek (International Journal of Advanced Manufacturing Technology 59:299–309, 2012b ; Applied Mathematics and Computations 218:6498–6510, 2012c ) remains unknown because of another mistake which we are unable to correct. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Adam Janiak & Mikhail Kovalyov & Maciej Lichtenstein, 2013. "Strong NP-hardness of scheduling problems with learning or aging effect," Annals of Operations Research, Springer, vol. 206(1), pages 577-583, July.
  • Handle: RePEc:spr:annopr:v:206:y:2013:i:1:p:577-583:10.1007/s10479-013-1364-x
    DOI: 10.1007/s10479-013-1364-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-013-1364-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-013-1364-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xingong Zhang & Guangle Yan & Wanzhen Huang & Guochun Tang, 2011. "Single-machine scheduling problems with time and position dependent processing times," Annals of Operations Research, Springer, vol. 186(1), pages 345-356, June.
    2. Radosław Rudek, 2012. "Scheduling problems with position dependent job processing times: computational complexity results," Annals of Operations Research, Springer, vol. 196(1), pages 491-516, July.
    3. Ji-Bo Wang & Ming-Zheng Wang, 2011. "Worst-case behavior of simple sequencing rules in flow shop scheduling with general position-dependent learning effects," Annals of Operations Research, Springer, vol. 191(1), pages 155-169, November.
    4. Dar-Li Yang & Wen-Hung Kuo, 2009. "Single-machine scheduling with both deterioration and learning effects," Annals of Operations Research, Springer, vol. 172(1), pages 315-327, November.
    5. Wen-Hung Kuo, 2012. "Single-machine group scheduling with time-dependent learning effect and position-based setup time learning effect," Annals of Operations Research, Springer, vol. 196(1), pages 349-359, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin-Hui Sun & Kai Cui & Ju-Hong Chen & Jun Wang & Xian-Chen He, 2013. "Research on permutation flow shop scheduling problems with general position-dependent learning effects," Annals of Operations Research, Springer, vol. 211(1), pages 473-480, December.
    2. Zhe Zhang & Xiaoling Song & Huijun Huang & Yong Yin & Benjamin Lev, 2022. "Scheduling problem in seru production system considering DeJong’s learning effect and job splitting," Annals of Operations Research, Springer, vol. 312(2), pages 1119-1141, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radosław Rudek, 2012. "Scheduling problems with position dependent job processing times: computational complexity results," Annals of Operations Research, Springer, vol. 196(1), pages 491-516, July.
    2. Lin-Hui Sun & Kai Cui & Ju-Hong Chen & Jun Wang & Xian-Chen He, 2013. "Research on permutation flow shop scheduling problems with general position-dependent learning effects," Annals of Operations Research, Springer, vol. 211(1), pages 473-480, December.
    3. Lin-Hui Sun & Kai Cui & Ju-Hong Chen & Jun Wang & Xian-Chen He, 2013. "Some results of the worst-case analysis for flow shop scheduling with a learning effect," Annals of Operations Research, Springer, vol. 211(1), pages 481-490, December.
    4. Baruch Mor & Gur Mosheiov, 2018. "A note: minimizing total absolute deviation of job completion times on unrelated machines with general position-dependent processing times and job-rejection," Annals of Operations Research, Springer, vol. 271(2), pages 1079-1085, December.
    5. Jin Qian & Haiyan Han, 2022. "Improved algorithms for proportionate flow shop scheduling with due-window assignment," Annals of Operations Research, Springer, vol. 309(1), pages 249-258, February.
    6. Bai, Danyu & Tang, Mengqian & Zhang, Zhi-Hai & Santibanez-Gonzalez, Ernesto DR, 2018. "Flow shop learning effect scheduling problem with release dates," Omega, Elsevier, vol. 78(C), pages 21-38.
    7. Lu Liu & Jian-Jun Wang & Xiao-Yuan Wang, 2016. "Single machine due-window assignment scheduling with resource-dependent processing times to minimise total resource consumption cost," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1186-1195, February.
    8. Peng Liu & Xiaoli Wang, 2017. "Maximum Lateness Scheduling on Two-Person Cooperative Games with Variable Processing Times and Common Due Date," Journal of Optimization, Hindawi, vol. 2017, pages 1-7, April.
    9. Li, Gang & Wang, Xiao-Yuan & Wang, Ji-Bo & Sun, Lin-Yan, 2013. "Worst case analysis of flow shop scheduling problems with a time-dependent learning effect," International Journal of Production Economics, Elsevier, vol. 142(1), pages 98-104.
    10. Wenjuan Fan & Jun Pei & Xinbao Liu & Panos M. Pardalos & Min Kong, 2018. "Serial-batching group scheduling with release times and the combined effects of deterioration and truncated job-dependent learning," Journal of Global Optimization, Springer, vol. 71(1), pages 147-163, May.
    11. S Gawiejnowicz & W-C Lee & C-L Lin & C-C Wu, 2011. "Single-machine scheduling of proportionally deteriorating jobs by two agents," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 1983-1991, November.
    12. Xinyu Sun & Xin-Na Geng & Tao Liu, 2020. "Due-window assignment scheduling in the proportionate flow shop setting," Annals of Operations Research, Springer, vol. 292(1), pages 113-131, September.
    13. Kinable, Joris & Cire, Andre A. & van Hoeve, Willem-Jan, 2017. "Hybrid optimization methods for time-dependent sequencing problems," European Journal of Operational Research, Elsevier, vol. 259(3), pages 887-897.
    14. Gara-Ali, Ahmed & Finke, Gerd & Espinouse, Marie-Laure, 2016. "Parallel-machine scheduling with maintenance: Praising the assignment problem," European Journal of Operational Research, Elsevier, vol. 252(1), pages 90-97.
    15. Baruch Mor, 2022. "Minmax common flow-allowance problems with convex resource allocation and position-dependent workloads," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 79-97, January.
    16. Yashar Ahmadov & Petri Helo, 2018. "A cloud based job sequencing with sequence-dependent setup for sheet metal manufacturing," Annals of Operations Research, Springer, vol. 270(1), pages 5-24, November.
    17. Markó Horváth & Tamás Kis, 2020. "Polyhedral results for position-based scheduling of chains on a single machine," Annals of Operations Research, Springer, vol. 284(1), pages 283-322, January.
    18. Zhang Xingong & Wang Yong & Bai Shikun, 2016. "Single-machine group scheduling problems with deteriorating and learning effect," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(10), pages 2402-2410, July.
    19. Xiufang Zhang & Tangbin Xia & Ershun Pan & Yuqing Li, 2022. "Integrated optimization on production scheduling and imperfect preventive maintenance considering multi-degradation and learning-forgetting effects," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 451-482, June.
    20. Rustogi, Kabir & Strusevich, Vitaly A., 2012. "Simple matching vs linear assignment in scheduling models with positional effects: A critical review," European Journal of Operational Research, Elsevier, vol. 222(3), pages 393-407.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:206:y:2013:i:1:p:577-583:10.1007/s10479-013-1364-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.