IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v202y2013i1p103-11910.1007-s10479-011-0946-8.html
   My bibliography  Save this article

Analytic approximations of queues with lightly- and heavily-correlated autoregressive service times

Author

Listed:
  • Dieter Fiems
  • Balakrishna Prabhu
  • Koen Turck

Abstract

We consider a single-server queueing system. The arrival process is modelled as a Poisson process while the service times of the consecutive customers constitute a sequence of autoregressive random variables. Our interest into autoregressive service times comes from the need to capture temporal correlation of the channel conditions on wireless network links. If these fluctuations are slow in comparison with the transmission times of the packets, transmission times of consecutive packets are correlated. Such correlation needs to be taken into account for an accurate performance assessment. By means of a transform approach, we obtain a functional equation for the joint transform of the queue content and the current service time at departure epochs in steady state. To the best of our knowledge, this functional equation cannot be solved by exact mathematical techniques, despite its simplicity. However, by means of a Taylor series expansion in the parameter of the autoregressive process, a “light-correlation” approximation is obtained for performance measures such as moments of the queue content and packet delay. We illustrate our approach by some numerical examples, thereby assessing the accuracy of our approximations by simulation. For the heavy correlation case, we give differential equation approximations based on the time-scale separation technique, and present numerical examples in support of this approximation. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Dieter Fiems & Balakrishna Prabhu & Koen Turck, 2013. "Analytic approximations of queues with lightly- and heavily-correlated autoregressive service times," Annals of Operations Research, Springer, vol. 202(1), pages 103-119, January.
  • Handle: RePEc:spr:annopr:v:202:y:2013:i:1:p:103-119:10.1007/s10479-011-0946-8
    DOI: 10.1007/s10479-011-0946-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-011-0946-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-011-0946-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. P. C. Blanc, 1992. "The Power-Series Algorithm Applied to the Shortest-Queue Model," Operations Research, INFORMS, vol. 40(1), pages 157-167, February.
    2. Blanc, J.P.C., 1998. "The power-series algorithm for polling systems with time limits," Other publications TiSEM 3366bad3-964d-4039-82cc-a, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Partha Chakroborty & Rahul Gill & Pranamesh Chakraborty, 2016. "Analysing queueing at toll plazas using a coupled, multiple-queue, queueing system model: application to toll plaza design," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(7), pages 675-692, October.
    2. Plinio S. Dester & Christine Fricker & Danielle Tibi, 2017. "Stationary analysis of the shortest queue problem," Queueing Systems: Theory and Applications, Springer, vol. 87(3), pages 211-243, December.
    3. Blanc, J.P.C., 1990. "Performance evaluation of polling systems by means of the power-series algorithm," Research Memorandum FEW 459, Tilburg University, School of Economics and Management.
    4. Herwig Bruneel & Arnaud Devos, 2024. "Explicit Solutions for Coupled Parallel Queues," Mathematics, MDPI, vol. 12(15), pages 1-31, July.
    5. M. Saxena & I. Dimitriou & S. Kapodistria, 2020. "Analysis of the shortest relay queue policy in a cooperative random access network with collisions," Queueing Systems: Theory and Applications, Springer, vol. 94(1), pages 39-75, February.
    6. Blanc, J.P.C., 2009. "Bad luck when joining the shortest queue," European Journal of Operational Research, Elsevier, vol. 195(1), pages 167-173, May.
    7. van den Hout, W.B. & Blanc, J.P.C., 1994. "The power-series algorithm for Markovian queueing networks," Other publications TiSEM 1312893d-c375-4b17-bbbe-3, Tilburg University, School of Economics and Management.
    8. Danielle Tibi, 2019. "Martingales and buffer overflow for the symmetric shortest queue model," Queueing Systems: Theory and Applications, Springer, vol. 93(1), pages 153-190, October.
    9. van den Hout, W.B. & Blanc, J.P.C., 1994. "The Power-Series Algorithm for a Wide Class of Markov Processes," Discussion Paper 1994-87, Tilburg University, Center for Economic Research.
    10. Ahmad Hanbali & Roland Haan & Richard Boucherie & Jan-Kees Ommeren, 2012. "Time-limited polling systems with batch arrivals and phase-type service times," Annals of Operations Research, Springer, vol. 198(1), pages 57-82, September.
    11. P. Patrick Wang, 2000. "Workload distribution of discrete‐time parallel queues with two servers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(5), pages 440-454, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:202:y:2013:i:1:p:103-119:10.1007/s10479-011-0946-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.