IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v167y2009i1p287-29610.1007-s10479-007-0223-z.html
   My bibliography  Save this article

Local improvement in planar facility location using vehicle routing

Author

Listed:
  • Saïd Salhi
  • Gábor Nagy

Abstract

In physical distribution the location of depots and vehicle routes are interdependent problems, but they are usually treated independently. Location-routing is the study of solving locational problems such that routing considerations are taken into account. We present an iterative heuristic for the location-routing problem on the plane. For each depot the Weber problem is solved using the end-points of the routes found previously as input nodes to the Weiszfeld procedure. Although the improvements found are usually small they show that it pays not to ignore the routing aspects when solving continuous location problems. Possible research avenues in continuous location-routing will also be suggested. Copyright Springer Science+Business Media, LLC 2009

Suggested Citation

  • Saïd Salhi & Gábor Nagy, 2009. "Local improvement in planar facility location using vehicle routing," Annals of Operations Research, Springer, vol. 167(1), pages 287-296, March.
  • Handle: RePEc:spr:annopr:v:167:y:2009:i:1:p:287-296:10.1007/s10479-007-0223-z
    DOI: 10.1007/s10479-007-0223-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-007-0223-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-007-0223-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perl, Jossef & Daskin, Mark S., 1985. "A warehouse location-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 19(5), pages 381-396, October.
    2. Mladenovic, Nenad & Brimberg, Jack & Hansen, Pierre & Moreno-Perez, Jose A., 2007. "The p-median problem: A survey of metaheuristic approaches," European Journal of Operational Research, Elsevier, vol. 179(3), pages 927-939, June.
    3. J. Brimberg & S. Salhi, 2005. "A Continuous Location-Allocation Problem with Zone-Dependent Fixed Cost," Annals of Operations Research, Springer, vol. 136(1), pages 99-115, April.
    4. Nagy, Gabor & Salhi, Said, 2007. "Location-routing: Issues, models and methods," European Journal of Operational Research, Elsevier, vol. 177(2), pages 649-672, March.
    5. Salhi, Said & Rand, Graham K., 1989. "The effect of ignoring routes when locating depots," European Journal of Operational Research, Elsevier, vol. 39(2), pages 150-156, March.
    6. N A Wassan, 2006. "A reactive tabu search for the vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 111-116, January.
    7. Zainuddin, Z.M. & Salhi, S., 2007. "A perturbation-based heuristic for the capacitated multisource Weber problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1194-1207, June.
    8. Robert C. Burness & John A. White, 1976. "The Traveling Salesman Location Problem," Transportation Science, INFORMS, vol. 10(4), pages 348-360, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Menezes, Mozart B.C. & Ruiz-Hernández, Diego & Verter, Vedat, 2016. "A rough-cut approach for evaluating location-routing decisions via approximation algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 89-106.
    2. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    3. Vichitkunakorn, Panupong & Emde, Simon & Masae, Makusee & Glock, Christoph H. & Grosse, Eric H., 2024. "Locating charging stations and routing drones for efficient automated stocktaking," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1129-1145.
    4. Emre Tokgöz & Samir Alwazzi & Theodore Trafalis, 2015. "A heuristic algorithm to solve the single-facility location routing problem on Riemannian surfaces," Computational Management Science, Springer, vol. 12(3), pages 397-415, July.
    5. Zhu Jianming, 2014. "Non-linear Integer Programming Model and Algorithms for Connected p-facility Location Problem," Journal of Systems Science and Information, De Gruyter, vol. 2(5), pages 451-460, October.
    6. Chandra Ade Irawan & Martino Luis & Said Salhi & Arif Imran, 2019. "The incorporation of fixed cost and multilevel capacities into the discrete and continuous single source capacitated facility location problem," Annals of Operations Research, Springer, vol. 275(2), pages 367-392, April.
    7. Walid Klibi & Francis Lasalle & Alain Martel & Soumia Ichoua, 2010. "The Stochastic Multiperiod Location Transportation Problem," Transportation Science, INFORMS, vol. 44(2), pages 221-237, May.
    8. Chandra Ade Irawan & Said Salhi & Kusmaningrum Soemadi, 2020. "The continuous single-source capacitated multi-facility Weber problem with setup costs: formulation and solution methods," Journal of Global Optimization, Springer, vol. 78(2), pages 271-294, October.
    9. Turkensteen, Marcel & Klose, Andreas, 2012. "Demand dispersion and logistics costs in one-to-many distribution systems," European Journal of Operational Research, Elsevier, vol. 223(2), pages 499-507.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hunkar Toyoglu & Oya Ekin Karasan & Bahar Yetis Kara, 2011. "Distribution network design on the battlefield," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(3), pages 188-209, April.
    2. Karaoglan, Ismail & Altiparmak, Fulya & Kara, Imdat & Dengiz, Berna, 2012. "The location-routing problem with simultaneous pickup and delivery: Formulations and a heuristic approach," Omega, Elsevier, vol. 40(4), pages 465-477.
    3. Nagy, Gabor & Salhi, Said, 2007. "Location-routing: Issues, models and methods," European Journal of Operational Research, Elsevier, vol. 177(2), pages 649-672, March.
    4. Daniel Negrotto & Irene Loiseau, 2021. "A Branch & Cut algorithm for the prize-collecting capacitated location routing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 34-57, April.
    5. Menezes, Mozart B.C. & Ruiz-Hernández, Diego & Verter, Vedat, 2016. "A rough-cut approach for evaluating location-routing decisions via approximation algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 89-106.
    6. Stenger, Andreas & Schneider, Michael & Schwind, Michael & Vigo, Daniele, 2012. "Location routing for small package shippers with subcontracting options," International Journal of Production Economics, Elsevier, vol. 140(2), pages 702-712.
    7. Hunkar Toyoglu & Oya Karasan & Bahar Kara, 2012. "A New Formulation Approach for Location-Routing Problems," Networks and Spatial Economics, Springer, vol. 12(4), pages 635-659, December.
    8. Emre Tokgöz & Samir Alwazzi & Theodore Trafalis, 2015. "A heuristic algorithm to solve the single-facility location routing problem on Riemannian surfaces," Computational Management Science, Springer, vol. 12(3), pages 397-415, July.
    9. Mina, Hokey & Jayaraman, Vaidyanathan & Srivastava, Rajesh, 1998. "Combined location-routing problems: A synthesis and future research directions," European Journal of Operational Research, Elsevier, vol. 108(1), pages 1-15, July.
    10. Jenn-Rong Lin & Hsien-Chung Lei, 2009. "Distribution systems design with two-level routing considerations," Annals of Operations Research, Springer, vol. 172(1), pages 329-347, November.
    11. Christian Haket & Bo van der Rhee & Jacques de Swart, 2020. "Saving Time and Money and Reducing Carbon Dioxide Emissions by Efficiently Allocating Customers," Interfaces, INFORMS, vol. 50(3), pages 153-165, May.
    12. Karaoglan, Ismail & Altiparmak, Fulya & Kara, Imdat & Dengiz, Berna, 2011. "A branch and cut algorithm for the location-routing problem with simultaneous pickup and delivery," European Journal of Operational Research, Elsevier, vol. 211(2), pages 318-332, June.
    13. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    14. Liu, Yubin & Ye, Qiming & Escribano-Macias, Jose & Feng, Yuxiang & Candela, Eduardo & Angeloudis, Panagiotis, 2023. "Route planning for last-mile deliveries using mobile parcel lockers: A hybrid q-learning network approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    15. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    16. Alvarez, Jose A. Lopez & Buijs, Paul & Deluster, Rogier & Coelho, Leandro C. & Ursavas, Evrim, 2020. "Strategic and operational decision-making in expanding supply chains for LNG as a fuel," Omega, Elsevier, vol. 97(C).
    17. Danışment Vural & Robert F. Dell & Erkan Kose, 2021. "Locating unmanned aircraft systems for multiple missions under different weather conditions," Operational Research, Springer, vol. 21(1), pages 725-744, March.
    18. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    19. Jee Eun Kang & Will Recker, 2015. "Strategic Hydrogen Refueling Station Locations with Scheduling and Routing Considerations of Individual Vehicles," Transportation Science, INFORMS, vol. 49(4), pages 767-783, November.
    20. Andrés Martínez-Reyes & Carlos L. Quintero-Araújo & Elyn L. Solano-Charris, 2021. "Supplying Personal Protective Equipment to Intensive Care Units during the COVID-19 Outbreak in Colombia. A Simheuristic Approach Based on the Location-Routing Problem," Sustainability, MDPI, vol. 13(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:167:y:2009:i:1:p:287-296:10.1007/s10479-007-0223-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.